Conflict-Driven Heuristics for Mixed Integer Programming

Two essential ingredients of modern mixed-integer programming (MIP) solvers are diving heuristics that simulate a partial depth-first search in a branch-and-bound search tree and conflict analysis of infeasible subproblems to learn valid constraints. So far, these techniques have mostly been studied independently: primal heuristics under the aspect of finding high-quality feasible solutions early during the … Read more

A scalable mixed-integer decomposition approach for optimal power system restoration

The optimal restoration problem lies at the foundation of the evaluation and improvement of resilience in power systems. In this paper we present a scalable decomposition algorithm, based on the integer L-shaped method, for solving this problem for realistic power systems. The algorithm works by partitioning the problem into a master problem and a slave … Read more

Learning to Project in Multi-Objective Binary Linear Programming

In this paper, we investigate the possibility of improving the performance of multi-objective optimization solution approaches using machine learning techniques. Specifically, we focus on multi-objective binary linear programs and employ one of the most effective and recently developed criterion space search algorithms, the so-called KSA, during our study. This algorithm computes all nondominated points of … Read more

A fully mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zones

Economic dispatch (ED) problem considering valve-point effects (VPE), transmission loss and prohibited operating zones (POZ) is a very challenging issue due to its intrinsic non-convex, non-smooth and non-continuous natures. To achieve a near globally solution, a fully mixed-integer linear programming (FMILP) formulation is proposed for such an ED problem. Since the original loss function is … Read more

The Noncooperative Fixed Charge Transportation Problem

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared, which differ in their treatment of shared social costs. This may be used from … Read more

Adaptive Large Neighborhood Search for Mixed Integer Programming

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) … Read more

Strong mixed-integer programming formulations for trained neural networks

We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. … Read more

Pattern-based models and a cooperative parallel metaheuristic for high school timetabling problems

High school timetabling problems consist in building periodic timetables for class-teacher meetings considering compulsory and non-compulsory requisites. This family of problems has been widely studied since the 1950s, mostly via mixed-integer programming and metaheuristic techniques. However, the efficient obtention of optimal or near-optimal solutions is still a challenge for many problems of practical size. In … Read more

n-step cutset inequalities: facets for multi-module capacitated network design problem

Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on links. In network design problems, decisions are made on installation of flow transfer capacities on the links and routing of flow from a set of source nodes to a set of sink nodes through the links. Many … Read more

Enhancing large neighbourhood search heuristics for Benders’ decomposition

A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search … Read more