Equity-Driven Workload Allocation for Crowdsourced Last-Mile Delivery

Crowdshipping, a rapidly growing approach in Last-Mile Delivery (LMD), relies on independent crowdworkers for delivery orders. Building a sustainable network of crowdshippers is essential for the survival and growth of such systems, while their participation is primarily motivated by fair pay. Additionally, the financial well-being of crowdworkers is sensitive to fair compensation, especially for those … Read more

A Hybrid Genetic Algorithm for Generalized Order Acceptance and Scheduling

In this paper, a novel approach is presented to address a challenging optimization problem known as Generalized Order Acceptance Scheduling. This problem involves scheduling a set of orders on a single machine with release dates, due dates, deadlines, and sequence-dependent setup times judiciously to maximize revenue. In view of resource constraints, not all orders can … Read more

Solving Hard Bi-objective Knapsack Problems Using Deep Reinforcement Learning

We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective … Read more

A Criterion Space Search Feasibility Pump Heuristic for Solving Maximum Multiplicative Programs

We study a class of nonlinear optimization problems with diverse practical applications, particularly in cooperative game theory. These problems are referred to as Maximum Multiplicative Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multiobjective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is specifically designed to … Read more

Solving Multiplicative Programs by Binary-encoding the Multiplication Operation

Multiplicative programs in the form of maximization and/or minimization have numerous applications in conservation planning, game theory, and multi-objective optimization settings. In practice, multiplicative programs are challenging to solve because of their multiplicative objective function (a product of continuous or integer variables). These challenges are twofold: 1. As the number of factors in the objective … Read more

The Magic of Nash Social Welfare in Optimization: Do Not Sum, Just Multiply!

In this paper, we explain some key challenges when dealing with a single/multi-objective optimization problem in practice. To overcome these challenges, we present a mathematical program that optimizes a Nash Social Welfare function. We refer to this mathematical program as the Nash Social Welfare Program (NSWP). An interesting property of the NSWP is that it … Read more

Multi-objective Optimization Based Algorithms for Solving Mixed Integer Linear Minimum Multiplicative Programs

We present two new algorithms for a class of single-objective non-linear optimization problems, the so-called Mixed Integer Linear minimum Multiplicative Programs (MIL-mMPs). This class of optimization problems has a desirable characteristic: a MIL-mMP can be viewed as a special case of the problem of optimization over the efficient set in multi-objective optimization. The proposed algorithms … Read more

Query Batching Optimization in Database Systems

Techniques based on sharing data and computation among queries have been an active research topic in database systems. While work in this area developed algorithms and systems that are shown to be effective, there is a lack of rigorous modeling and theoretical study for query processing and optimization. Query batching in database systems has strong … Read more

A bi-level branch-and-bound algorithm for the capacitated competitive facility location problem

Competitive facility location problem is a typical facility locating optimization problem but in a competitive environment. The main characteristic of this problem is the competitive nature of the market. In essence, the problem involves two competitors, i.e., a leader and a follower, who seek to attract customers by establishing new facilities to maximize their own … Read more

Exact Solution Approaches for Integer Linear Generalized Maximum Multiplicative Programs Through the Lens of Multi-objective Optimization

We study a class of single-objective nonlinear optimization problems, the so-called Integer Linear Generalized Maximum Multiplicative Programs (IL-GMMP). This class of optimization problems has a significant number of applications in different fields of study including but not limited to game theory, systems reliability, and conservative planning. An IL-GMMP can be reformulated as a mixed integer … Read more