A probabilistic analysis of the strength of the split and triangle closures

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a `worst-cost’ type … Read more

Facets of the minimum-adjacency vertex coloring polytope

In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation … Read more

Lower bounds for the Chvátal-Gomory rank in the 0/1 cube

Although well studied, important questions on the rank of the Chvátal-Gomory operator when restricting to polytopes contained in the n-dimensional 0/1 cube have not been answered yet. In particular, the question on the maximal rank of the Chvátal-Gomory procedure for this class of polytopes is still open. So far, the best-known upper bound is O(n^2 … Read more

Non-linear approximations for solving 3D-packing MIP models: a heuristic approach

This article extends a previous work focused on a mixed integer programming (MIP) based heuristic approach, aimed at solving non-standard three-dimensional problems with additional conditions. The paper that follows considers a mixed integer non-linear (MINLP) reformulation of the previous model, to improve the former heuristic, based on linear relaxation. The approach described herewith is addressed, … Read more

A Computational Study of the Cutting Plane Tree Algorithm for General Mixed-Integer Linear Programs

The cutting plane tree (CPT) algorithm provides a finite disjunctive programming procedure to obtain the solution of general mixed-integer linear programs (MILP) with bounded integer variables. In this paper, we present our computational experience with variants of the CPT algorithm. Because the CPT algorithm is based on discovering multi-term disjunctions, this paper is the first … Read more

An Empirical Evaluation of Walk-and-Round Heuristics for Mixed-Integer Linear Programs

Geometric random walks have been proposed and analyzed for solving optimization problems. In this paper we report our computational experience with generating feasible integer solutions of mixed-integer linear programs using geometric random walks, and a random ray approach. A feasibility pump is used to heuristically round the generated points. Computational results on MIPLIB2003 and COR@L … Read more

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this … Read more

An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming

We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound … Read more

Inclusion Certificates and Simultaneous Convexification of Functions

We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions … Read more

A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0