Combining QCR and CHR for Convex Quadratic MINLP Problems with Linear Constraints

The convex hull relaxation (CHR) method (Albornoz 1998, Ahlatçıoğlu 2007, Ahlatçıoğlu and Guignard 2010) provides lower bounds and feasible solutions (thus upper bounds) on convex 0-1 nonlinear programming problems with linear constraints. In the quadratic case, these bounds may often be improved by a preprocessing step that adds to the quadratic objective function terms which … Read more

A Probing Algorithm for MINLP with Failure Prediction by SVM

Bound tightening is an important component of algorithms for solving nonconvex Mixed Integer Nonlinear Programs. A {\em probing} algorithm is a bound-tightening procedure that explores the consequences of restricting a variable to a subinterval with the goal of tightening its bounds. We propose a variant of probing where exploration is based on iteratively applying a … Read more

New developments in the primal-dual column generation technique

The classical column generation is based on optimal solutions of the restricted master problems. This strategy frequently results in an unstable behaviour and may require an unnecessarily large number of iterations. To overcome this weakness, variations of the classical approach use interior points of the dual feasible set, instead of optimal solutions. In this paper, … Read more

Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets

In this paper, we study properties of general closed convex sets that determine the closed-ness and polyhedrality of the convex hull of integer points contained in it. We first present necessary and sufficient conditions for the convex hull of integer points contained in a general convex set to be closed. This leads to useful results … Read more

Global Routing in VLSI Design: Algorithms, Theory, and Computational Practice

Global routing in VLSI (very large scale integration) design is one of the most challenging discrete optimization problems in computational theory and practice. In this paper, we present a polynomial time algorithm for the global routing problem based on integer programming formulation with a theoretical approximation bound. The algorithm ensures that all routing demands are … Read more

A note on the MIR closure and basic relaxations of polyhedra

Anderson, Cornuejols and Li (2005) show that for a polyhedral mixed integer set defined by a constraint system Ax >= b, where x is n-dimensional, along with integrality restrictions on some of the variables, any split cut is in fact a split cut for a “basic relaxation”, i.e., one defined by a subset of linearly … Read more

An Exact Penalty Global Optimization Approach for Mixed-Integer Programming Problems

In this work, we propose a global optimization approach for mixed-integer programming problems. To this aim, we preliminarily de ne an exact penalty algorithm model for globally solving general problems and we show its convergence properties. Then, we describe a particular version of the algorithm that solves mixed integer problems. Citation DIS Technical Report n. 17, … Read more

Integer-empty polytopes in the 0/1-cube with maximal Gomory-Chvátal rank

We provide a complete characterization of all polytopes P ⊆ [0,1]^n with empty integer hull whose Gomory-Chvátal rank is n (and, therefore, maximal). In particular, we show that the first Gomory- Chvátal closure of all these polytopes is identical. Article Download View Integer-empty polytopes in the 0/1-cube with maximal Gomory-Chvátal rank

A Branch-and-Price Approach to the k-Clustering Minimum Biclique Completion Problem

Given a bipartite graph G = (S , T , E ), we consider the problem of finding k bipartite subgraphs, called clusters, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and … Read more

Formulations for Dynamic Lot Sizing with Service Levels

In this paper, we study deterministic dynamic lot-sizing problems with service level constraints on the total number of periods in which backorders can occur over the finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the structure of its solution. We show that an optimal … Read more