Solving diameter constrained minimum spanning tree problems in dense graphs

In this study, a lifting procedure is applied to some existing formulations of the Diameter Constrained Minimum Spanning Tree Problem. This problem typically models network design applications where all vertices must communicate with each other at minimum cost, while meeting or surpassing a given quality requirement. An alternative formulation is also proposed for instances of … Read more

Integer programming, duality and superadditive functions

Given $A \in Z^{m\times n}$, $b \in Z^m, c \in R^n$, we consider the integer program $P_d: \max \{c’x\vert Ax=b;x\in Z^n_+\}$ which has a well-known abstract dual optimization problem stated in terms of superadditive functions. Using a linear program $Q$ equivalent to $P_d$ that we have introduced recently, we show that its dual $Q^*$ can … Read more

Valid inequalities based on the interpolation procedure

We study the interpolation procedure of Gomory and Johnson (1972), which generates cutting planes for general integer programs from facets of master cyclic group polyhedra. This idea has recently been re-considered by Evans (2002) and Gomory, Johnson and Evans (2003). We compare inequalities generated by this procedure with mixed-integer rounding (MIR) based inequalities discussed in … Read more

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by … Read more

Cover Inequalities for Binary-Integer Knapsack Constraints

We consider knapsack constraints involving one general integer and many binary variables. We introduce the concept of a cover for such a constraint and we construct a new family of valid inequalities based on this concept. We generalize this idea to extended covers, and we propose a specialized lifting procedure for cover inequalities. Finally, we … Read more

Strong Formulations of Robust Mixed 0-1 Programming

We describe strong mixed-integer programming formulations for robust mixed 0-1 programming with uncertainty in the objective coefficients. In particular, we focus on an objective uncertainty set described as a polytope with a budget constraint. We show that for a robust 0-1 problem, there is a tight linear programming formulation with size polynomial in the size … Read more

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Interior-point methods (IPMs), originally conceived in the context of linear programming have found a variety of applications in integer programming, and combinatorial optimization. This survey presents an up to date account of IPMs in solving NP-hard combinatorial optimization problems to optimality, and also in developing approximation algorithms for some of them. The surveyed approaches include … Read more

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem

This paper addresses a multi-stage stochastic integer programming formulation of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (l,S) inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing polytope. We then extend the (l,S) inequalities to a general class of valid inequalities, called the (Q,S_Q) inequalities, and we … Read more

A Polytope for a Product of Real Linear Functions in 0/1 Variables

In the context of integer programming, we develop a polyhedral method for linearizing a product of a pair of real linear functions in 0/1 variables. As an example, by writing a pair of integer variables in binary expansion, we have a technique for linearizing their product. We give a complete linear description for the resulting … Read more

Semi-Continuous Cuts for Mixed-Integer Programming

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem is a relaxation of general mixed-integer programming. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can … Read more