Empirical Bounds on Linear Regions of Deep Rectifier Networks

One form of characterizing the expressiveness of a piecewise linear neural network is by the number of linear regions, or pieces, of the function modeled. We have observed substantial progress in this topic through lower and upper bounds on the maximum number of linear regions and a counting procedure. However, these bounds only account for … Read more

Mathematical models for stable matching problems with ties and incomplete lists

We present new integer linear programming (ILP) models for NP-hard optimisation problems in instances of the Stable Marriage problem with Ties and Incomplete lists (SMTI) and its many-to-one generalisation, the Hospitals / Residents problem with Ties (HRT). These models can be used to efficiently solve these optimisation problems when applied to (i) instances derived from … Read more

Global Solutions of Nonconvex Standard Quadratic Programs via Mixed Integer Linear Programming Reformulations

A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative mixed integer linear programming formulations. Our first formulation is based on casting a standard quadratic program … Read more

Decision Diagram Decomposition for Quadratically Constrained Binary Optimization

In recent years the use of decision diagrams within the context of discrete optimization has proliferated. This paper continues this expansion by proposing the use of decision diagrams for modeling and solving binary optimization problems with quadratic constraints. The model proposes the use of multiple decision diagrams to decompose a quadratic matrix so that each … Read more

Analysis of Models for the Stochastic Outpatient Procedure Scheduling Problem

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of procedures for a single provider, where each procedure has a known type and associated probability distribution of random duration. Our objective is to minimize the expectation … Read more

Rapid prototyping of parallel primal heuristics for domain specific MIPs: Application to maritime inventory routing

Parallel Alternating Criteria Search (PACS) relies on the combination of computer parallelism and Large Neighborhood Searches to attempt to deliver high quality solutions to any generic Mixed-Integer Program (MIP) quickly. While general-purpose primal heuristics are widely used due to their universal application, they are usually outperformed by domain-specific heuristics when optimizing a particular problem class. … Read more

A Branch-and-Cut Algorithm for Solving Mixed-integer Semidefinite Optimization Problems

This paper is concerned with a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite constraint is relaxed, and the resultant mixed-integer linear optimization problem is repeatedly solved with valid inequalities for the relaxed constraint. We prove convergence properties of the algorithm. Moreover, to speed up the computation, we … Read more

Chvátal’s Conjecture Holds for Ground Sets of Seven Elements

We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer … Read more

Tight MIP formulations for bounded length cyclic sequences

We study cyclic binary strings with bounds on the lengths of the intervals of consecutive ones and zeros. This is motivated by scheduling problems where such binary strings can be used to represent the state (on/off) of a machine. In this context the bounds correspond to minimum and maximum lengths of on- or off-intervals, and … Read more