Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem

We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The … Read more

Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of … Read more

Branching with Hyperplanes in the Criterion Space: the Frontier Partitioner Algorithm for Biobjective Integer Programming

We present an algorithm for finding the complete Pareto frontier of biobjective integer programming problems. The method is based on the solution of a finite number of integer programs. The feasible sets of the integer programs are built from the original feasible set, by adding cuts that separate efficient solutions. Providing the existence of an … Read more

Adaptive Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit Algorithms

State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics … Read more

Fleet Sizing and Empty Freight Car Allocation

Empty freight car allocation problems as well as eet sizing problems depict highly important topics in the eld of railway cargo optimization. Fleet sizing is mainly used in order to nd the minimal number of freight cars ( xed costs) needed to operate the transportation network successfully (e.g. satisfy customer demands). After a consignment is transported … Read more

Design, Implementation and Simulation of an MPC algorithm for Switched Nonlinear Systems under Combinatorial Constraints

Within this work, we present a warm-started algorithm for Model Predictive Control (MPC) of switched nonlinear systems under combinatorial constraints based on Combinatorial Integral Approximation (CIA). To facilitate high-speed solutions, we introduce a preprocessing step for complexity reduction of CIA problems, and include this approach within a new toolbox for solution of CIA problems with … Read more

The sharpest column: stabilizing column generation for the bin packing problem via a lexicographic pricer

In spite of being an extremely successful method to tackle mathematical programs involving a very large number of variables, Column Generation (CG) is known to suffer from stabilization issues which can slow down its convergence significantly. In this article, we propose a new parameter-free stabilization technique for CG based on solving a lexicographic pricing problem. … Read more

Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market

In this paper we take an optimization-driven heuristic approach, motivated by dynamic programming, to solve a multistage stochastic optimization of energy consumption for a large manufacturer who is a price-making major consumer of electricity. We introduce a mixed-integer program that co-optimizes consumption bids and interruptible load reserve offers, for such a major consumer over a … Read more

Efficient Solution of Maximum-Entropy Sampling Problems

We consider a new approach for the maximum-entropy sampling problem (MESP) that is based on bounds obtained by maximizing a function of the form ldet M(x) over linear constraints, where M(x)is linear in the n-vector x. These bounds can be computed very efficiently and are superior to all previously known bounds for MESP on most … Read more

Decentralized Algorithms for Distributed Integer Programming Problems with a Coupling Cardinality Constraint

We consider a multi-player optimization where each player has her own optimization problem and the individual problems are connected by a cardinality constraint on their shared resources. We give distributed algorithms that allow each player to solve their own optimization problem and still achieve a global optimization solution for problems that possess a concavity property. … Read more