Permuting Spiked Matrices to Triangular Form and its Application to the Forrest-Tomlin Update

This paper is concerned with the problem of permuting a spiked matrix to triangular form. A spiked matrix results from changing one column or one row in a triangular matrix. In this paper we focus on changing one column in an upper triangular matrix. Spiked matrices arise in updating the LU factors of a matrix … Read more

A Benders squared (B2) framework for infinite-horizon stochastic linear programs

We propose a nested decomposition scheme for infinite-horizon stochastic linear programs. Our approach can be seen as a provably convergent extension of stochastic dual dynamic programming to the infinite-horizon setting: we explore a sequence of finite-horizon problems of increasing length until we can prove convergence with a given confidence level. The methodology alternates between a … Read more

On the Linear Extension Complexity of Stable Set Polytopes for Perfect Graphs

We study the linear extension complexity of stable set polytopes of perfect graphs. We make use of known structural results permitting to decompose perfect graphs into basic perfect graphs by means of two graph operations: 2-join and skew partitions. Exploiting the link between extension complexity and the nonnegative rank of an associated slack matrix, we … Read more

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as linear programming and second-order cone … Read more

Random projections for trust region subproblems

The trust region method is an algorithm traditionally used in the field of derivative free optimization. The method works by iteratively constructing surrogate models (often linear or quadratic functions) to approximate the true objective function inside some neighborhood of a current iterate. The neighborhood is called “trust region” in the sense that the model is … Read more

Random projections for linear programming

Random projections are random linear maps, sampled from appropriate distributions, that approximately preserve certain geometrical invariants so that the approximation improves as the dimension of the space grows. The well-known Johnson-Lindenstrauss lemma states that there are \LL{random matrices with surprisingly few rows} that approximately preserve pairwise Euclidean distances among a set of points. This is … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more

Randomized Linear Programming Solves the Discounted Markov Decision Problem In Nearly-Linear (Sometimes Sublinear) Running Time

We propose a randomized linear programming algorithm for approximating the optimal policy of the discounted Markov decision problem. By leveraging the value-policy duality, the algorithm adaptively samples state transitions and makes exponentiated primal-dual updates. We show that it finds an ε-optimal policy using nearly-linear running time in the worst case. For Markov decision processes that … Read more

A polynomial algorithm for linear feasibility problems given by separation oracles

The algorithm proposed in this paper runs in a polynomial oracle time, i.e., in a number of arithmetic operations and calls to the separation oracle bounded by a polynomial in the number of variables and in the maximum binary size of an entry of the coefficient matrix. This algorithm is much simpler than traditional polynomial … Read more