A Comparison of Lower Bounds for the Symmetric Circulant Traveling Salesman Problem

When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare … Read more

On the Central Paths and Cauchy Trajectories in Semidefinite Programming

In this work, we study the properties of central paths, defined with respect to a large class of penalty and barrier functions, for convex semidefinite programs. The type of programs studied here is characterized by the minimization of a smooth and convex objective function subject to a linear matrix inequality constraint. So, it is a … Read more

Building a completely positive factorization

Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions under which we can extend this factorization to the full matrix. Simulations show that the approach is promising also in higher dimensions. CitationPreprint, Univ.of Vienna (2017), submittedArticleDownload View PDF

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. CitationUnpublished. Columbia University, BHP Billiton, August 2009.ArticleDownload View … Read more

Arc-Search Path-Following Interior-Point Algorithms for Linear Programming

Arc-search is developed in optimization algorithms. In this paper, simple analytic arcs are used to approximate the central path of the linear programming. The primal-dual path-following interior-point method is then used to search optimizers along the arcs for linear programming. They require fewer iterations to find the optimal solutions in all the tested problems in … Read more

A note on Burer’s copositive representation of mixed-binary QPs

In an important paper, Burer recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum … Read more

Alternating Direction Augmented Lagrangian Methods for semidefinite programming

We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables … Read more

Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their … Read more

Mixed Zero-one Linear Programs Under Objective Uncertainty: A Completely Positive Representation

In this paper, we analyze mixed 0-1 linear programs under objective uncertainty. The mean vector and the second moment matrix of the nonnegative objective coefficients is assumed to be known, but the exact form of the distribution is unknown. Our main result shows that computing a tight upper bound on the expected value of a … Read more

On the computational complexity of gap-free duals for semidefinite programming

We consider the complexity of gap-free duals in semidefinite programming. Using the theory of homogeneous cones we provide a new representation of Ramana’s gap-free dual and show that the new formulation has a much better complexity than originally proved by Ramana. CitationCOR@L Technical Report, Lehigh UniversityArticleDownload View PDF