Fourier analysis, linear programming, and densities of distance avoiding sets in R^n

In this paper we derive new upper bounds for the densities of measurable sets in R^n which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions … Read more

Strange Behaviors of Interior-point Methods for Solving Semidefinite Programming Problems in Polynomial Optimization

We observe that in a simple one-dimensional polynomial optimization problem (POP), the `optimal’ values of semidefinite programming (SDP) relaxation problems reported by the standard SDP solvers converge to the optimal value of the POP, while the true optimal values of SDP relaxation problems are strictly and significantly less than that value. Some pieces of circumstantial … Read more

Strong Duality and Minimal Representations for Cone Optimization

The elegant results for strong duality and strict complementarity for linear programming, \LP, can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complementarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones. We take a … Read more

An Infeasible Interior-Point Algorithm with full-Newton Step for Linear Optimization

In this paper we present an infeasible interior-point algorithm for solving linear optimization problems. This algorithm is obtained by modifying the search direction in the algorithm [C. Roos, A full-Newton step ${O}(n)$ infeasible interior-point algorithm for linear optimization, 16(4) 2006, 1110-1136.]. The analysis of our algorithm is much simpler than that of the Roos’s algorithm … Read more

Closed-form solutions to static-arbitrage upper bounds on basket options

We provide a closed-form solution to the problem of computing the sharpest static-arbitrage upper bound on the price of a European basket option, given the prices of vanilla call options in the underlying securities. Unlike previous approaches to this problem, our solution technique is entirely based on linear programming. This also allows us to obtain … Read more

Iteration-complexity of first-order penalty methods

This paper considers a special but broad class of convex programing (CP) problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. We study two first-order penalty methods for solving the above class of problems, namely: the quadratic penalty method and … Read more

Representation of nonnegative convex polynomials

We provide a specific representation of convex polynomials nonnegative on a convex (not necessarily compact) basic closed semi-algebraic set $K$ of $R^n$. Namely, they belong to a specific subset of the quadratic module generated by the concave polynomials that define $K$. Citation To appear in Archiv der Mathematik Article Download View Representation of nonnegative convex … Read more

A New Full-Newton step (n)$ Infeasible Interior-Point Algorithm for Semidefinite Optimization

Interior-point methods for semidefinite optimization have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, the second author designed an efficient primal-dual infeasible interior-point algorithm with full Newton steps for linear optimization problems. In this paper we extend the algorithm to semidefinite optimization. The algorithm constructs strictly feasible iterates for a sequence … Read more

Convexity in semi-algebraic geometry and polynomial optimization

We review several (and provide new) results on the theory of moments, sums of squares and basic semi-algebraic sets when convexity is present. In particular, we show that under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to … Read more

A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with (\sqrt{n}\log{\frac{{\rm Tr}(X^0S^0)}{\epsilon}})$ iteration complexity

In this paper, we extend the Ai-Zhang direction to the class of semidefinite optimization problems. We define a new wide neighborhood $\N(\tau_1,\tau_2,\eta)$ and, as usual, we utilize symmetric directions by scaling the Newton equation with special matrices. After defining the “positive part” and the “negative part” of a symmetric matrix, we solve the Newton equation … Read more