S_1/2 Regularization Methods and Fixed Point Algorithms for Affine Rank Minimization Problems

The affine rank minimization problem is to minimize the rank of a matrix under linear constraints. It has many applications in various areas such as statistics, control, system identification and machine learning. Unlike the literatures which use the nuclear norm or the general Schatten $q~(0<q<1)$ quasi-norm to approximate the rank of a matrix, in this … Read more

Spectral bounds for the independence ratio and the chromatic number of an operator

We define the independence ratio and the chromatic number for bounded, self-adjoint operators on an L^2-space by extending the definitions for the adjacency matrix of finite graphs. In analogy to the Hoffman bounds for finite graphs, we give bounds for these parameters in terms of the numerical range of the operator. This provides a theoretical … Read more

VSDP: A Matlab toolbox for verified semidefinite-quadratic-linear programming

VSDP is a software package that is designed for the computation of verified results in conic programming. The current version of VSDP supports the constraint cone consisting of the product of semidefinite cones, second-order cones and the nonnegative orthant. It provides functions for computing rigorous error bounds of the true optimal value, verified enclosures of … Read more

On metric regularity for weakly almost piecewise smooth functions and some applications in nonlinear semidefinite programming

The one-to-one relation between the points fulfilling the KKT conditions of an optimization problem and the zeros of the corresponding Kojima function is well-known. In the present paper we study the interplay between metric regularity and strong regularity of this a priori nonsmooth function in the context of semidefinite programming. Having in mind the topological … Read more

A Primal-Dual Regularized Interior-Point Method for Semidefinite Programming

Interior-point methods in semidefinite programming (SDP) require the solution of a sequence of linear systems which are used to derive the search directions. Safeguards are typically required in order to handle rank-deficient Jacobians and free variables. We generalize the primal-dual regularization of \cite{friedlander-orban-2012} to SDP and show that it is possible to recover an optimal … Read more

On bounding the bandwidth of graphs with symmetry

We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semide finite programming relaxation of the minimum cut problem is obtained by strengthening the well-known semide nite programming relaxation for the quadratic assignment problem by fixing two vertices in the … Read more

A symmetric reduction of the NT direction

A stable symmetrization of the linear systems arising in interior-point methods for solving linear programs is introduced. A comparison of the condition numbers of the resulting interior-point linear systems with other commonly used approaches indicates that the new approach may be best suitable for an iterative solution. It is shown that there is a natural … Read more

Robustness Analysis of HottTopixx, a Linear Programming Model for Factoring Nonnegative Matrices

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is separable (that is, there exists a cone spanned by a small subset of the columns containing all columns). Since then, several algorithms have been designed to … Read more

Parallel Implementation of Successive Sparse SDP Relaxations for Large-scale Euclidean Distance Geometry Problems

The Euclidean distance geometry problem (EDGP) includes locating sensors in a sensor network and constructing a molecular configuration using given distances in the two or three-dimensional Euclidean space. When the locations of some nodes, called anchors, are given, the problem can be dealt with many existing methods. An anchor-free problem in the three-dimensional space, however, … Read more

The Slater condition is generic in linear conic programming

We call a property generic if it holds for almost all problem instances. For linear conic problems, it has been shown in the literature that properties like uniqueness, strict complementarity or nondegeneracy of the optimal solution are generic under the assumption that Slater’s condition is fulfilled. The possibility that Slater’s condition generically fails has not … Read more