Perturbation analysis of second order programming problems

We discuss first and second order optimality conditions for nonlinear second-order cone programming problems, and their relation with semidefinite programming problems. For doing this we extend in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in terms of second order optimality conditions. CitationResearch Report 5293 (August 2004), … Read more

Second-order Cone Programming Methods for Total Variation-based Image Restoration

In this paper we present optimization algorithms for image restoration based on the total variation (TV) minimization framework of L. Rudin, S. Osher and E. Fatemi (ROF). Our approach formulates TV minimization as a second-order cone program which is then solved by interior-point algorithms that are efficient both in practice (using nested dissection and domain … Read more

On exploiting structure induced when modelling an intersection of cones in conic optimization

Conic optimization is the problem of optimizing a linear function over an intersection of an affine linear manifold with the Cartesian product of convex cones. However, many real world conic models involves an intersection rather than the product of two or more cones. It is easy to deal with an intersection of one or more … Read more

Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem

A new formulation is presented for the three-dimensional incremental quasi-static problems with unilateral frictional contact. Under the assumptions of small rotations and small strains, a Second-Order Cone Linear omplementarity Problem (SOCLCP) is formulated, which consists of complementarity conditions defined by the bilinear functions and the second-order cone constraints. The equilibrium configurations are obtained by using … Read more

A Pivotting Procedure for a Class of Second-Order Cone Programming

We propose a pivotting procedure for a class of Second-Order Cone Programming (SOCP) having one second-order cone. We introduce a dictionary, basic variables, nonbasic variables, and other necessary notions to define a pivot for the class of SOCP. In a pivot, two-dimensional SOCP subproblems are solved to decide which variables should be entering to or … Read more

Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization

We study interior-point methods for optimization problems in the case of infeasibility or unboundedness. While many such methods are designed to search for optimal solutions even when they do not exist, we show that they can be viewed as implicitly searching for well-defined optimal solutions to related problems whose optimal solutions give certificates of infeasibility … Read more

Optimal Magnetic Shield Design with Second-Order Cone Programming

In this paper, we consider a continuous version of the convex network flow problem which involves the integral of the Euclidean norm of the flow and its square in the objective function. A discretized version of this problem can be cast as a second-order cone program, for which efficient primal-dual interior-point algorithms have been developed … Read more

Distance Weighted Discrimination

High Dimension Low Sample Size statistical analysis is becoming increasingly important in a wide range of applied contexts. In such situations, it is seen that the popular Support Vector Machine suffers from “data piling” at the margin, which can diminish generalizability. This leads naturally to the development of Distance Weighted Discrimination, which is based on … Read more

Linear Huber M-Estimator under Ellipsoidal Data Uncertainty

The purpose of this note is to present a robust counterpart of the Huber estimation problem in the sense of Ben-Tal and Nemirovski when the data elements are subject to ellipsoidal uncertainty. The robust counterparts are polynomially solvable second-order cone programs with the strong duality property. We illustrate the effectiveness of the robust counterpart approach … Read more

Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations

We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S.~Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of objective quadratic functions and diagonal coefficient matrices … Read more