Efficient First-Order Methods for Linear Programming and Semidefinite Programming

We present a simple transformation of any linear program or semidefinite program into an equivalent convex optimization problem whose only constraints are linear equations. The objective function is defined on the whole space, making virtually all subgradient methods be immediately applicable. We observe, moreover, that the objective function is naturally “smoothed,” thereby allowing most first-order … Read more

Semidefinite Optimization Approaches to Applications in Facility Layout and Logistics

The main contributions of this thesis are the comparison of existing and the design of new exact approaches based on linear, quadratic and semidefinite relaxations for row layout problems and several applications in logistic. In particular we demonstrate that our suggested semidefinite approach is the strongest exact method to date for most row layout problems. … Read more

On a new class of matrix support functionals with applications

A new class of matrix support functionals is presented which establish a connection between optimal value functions for quadratic optimization problems, the matrix-fractional function, the pseudo matrix-fractional function, and the nuclear norm. The support function is based on the graph of the product of a matrix with its transpose. Closed form expressions for the support … Read more

Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control … Read more

Sensitivity analysis of semidefinite programs without strong duality

Suppose that we are given a feasible conic program with a finite optimal value and with strong duality failing. It is known that there are small perturbations of the problem data that lead to relatively big changes in the optimal value. We quantify the notion of big change in the case of a semidefinite program … Read more

Exact duality in semidefinite programming based on elementary reformulations

In semidefinite programming (SDP), unlike in linear programming, Farkas’ lemma may fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate any equality constrained semidefinite system using only elementary row operations, and rotations. When the system is infeasible, the infeasibility of the reformulated system … Read more

Strong duality in Lasserre’s hierarchy for polynomial optimization

A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $K$ described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J.~B.~Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more

Approximating Pareto Curves using Semidefinite Relaxations

We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem $\min_{x \in S} \{(f_1(x),f_2(x))\}$, where $f_1$ and $f_2$ are two conflicting positive polynomial criteria and $S \subset R^n$ is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start … Read more