Properties of the Log-Barrier Function on Degenerate Nonlinear Programs

We examine the sequence of local minimizers of the log-barrier function for a nonlinear program near a solution at which second-order sufficient conditions and the Mangasarian-Fromovitz constraint qualifications are satisfied, but the active constraint gradients are not necessarily linearly independent. When a strict complementarity condition is satisfied, we show uniqueness of the local minimizer of … Read more

A Pattern Search Filter Method for Nonlinear Programming without Derivatives

This paper presents and analyzes a pattern search method for general constrained optimization based on filter methods for step acceptance. Roughly, a filter method accepts a step that either improves the objective function value or the value of some function that measures the constraint violation. The new algorithm does not compute or approximate any derivatives, … Read more

Assessing the Potential of Interior Methods for Nonlinear Optimization

A series of numerical experiments with interior point (LOQO, KNITRO) and active-set SQP codes (SNOPT, filterSQP) are reported and analyzed. The tests were performed with small, medium-size and moderately large problems, and are examined by problem classes. Detailed observations on the performance of the codes, and several suggestions on how to improve them are presented. … Read more

Feasible Interior Methods Using Slacks for Nonlinear Optimization

A slack-based feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the … Read more

A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach

This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of … Read more

Constraint Identification and Algorithm Stabilization for Degenerate Nonlinear Programs

In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so … Read more

Benchmarking Optimization Software with COPS

We describe version 2.0 of the COPS set of nonlinearly constrained optimization problems. We have added new problems, as well as streamlined and improved most of the problems. We also provide a comparison of the LANCELOT, LOQO, MINOS, and SNOPT solvers on these problems. Citation Technical Report ANL/MCS-246 Mathematics and Computer Science Division Argonne National … Read more

Feasibility Control in Nonlinear Optimization

We analyze the properties that optimization algorithms must possess in order to prevent convergence to non-stationary points for the merit function. We show that demanding the exact satisfaction of constraint linearizations results in difficulties in a wide range of optimization algorithms. Feasibility control is a mechanism that prevents convergence to spurious solutions by ensuring that … Read more