Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

Proximal Method for $\ell_0- based Sparse Enhanced Control Problems in Large-scale Interconnected Systems

This paper considers linear quadratic optimal control problem of large-scale interconnected systems. An algorithmic framework is constructed to design controllers that provide a desired tradeoff between the system performance and the sparsity of the static feedback matrix. This is accomplished by introducing a minimization problem involving $\ell_0-$norm of the feedback matrix subject to a maximum … Read more

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more

Dynamic Optimization with Complementarity Constraints: Smoothing for Direct Shooting

We consider optimization of differential-algebraic equations (DAEs) with complementarity constraints (CCs) of algebraic state pairs. Formulating the CCs as smoothed nonlinear complementarity problem (NCP) functions leads to a smooth DAE, allowing for the solution in direct shooting. We provide sufficient conditions for well-posedness. Thus, we can prove that with the smoothing parameter going to zero, … Read more

Mixed-Integer Optimal Control under Minimum Dwell Time Constraints

Tailored mixed-integer optimal control policies for real-world applications usually have to avoid very short successive changes of the active integer control. Minimum dwell time constraints express this requirement and can be included into the combinatorial integral approximation decomposition, which solves mixed-integer optimal control problems by solving one continuous nonlinear program and one mixed-integer linear program. … Read more

Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

RaBVItG:An Algorithm for Solving a Class of Multi-Players Feedback Nash Differential Games

In this work, we introduce a novel numerical algorithm, called RaBVItG (Radial Basis Value Iteration Game) to approximate feedback-Nash equilibria for deterministic differential games. More precisely, RaBVItG is an algorithm based on value iteration schemes in a meshfree context. It is used to approximate optimal feedback Nash policies for multi-players, trying to tackle the dimensionality … Read more

Planning for Dynamics under Uncertainty

Planning under uncertainty is a frequently encountered problem. Noisy observation is a typical situation that introduces uncertainty. Such a problem can be formulated as a Partially Observable Markov Decision Process (POMDP). However, solving a POMDP is nontrivial and can be computationally expensive in continuous state, action, observation and latent state space. Through this work, we … Read more

A switching cost aware rounding method for relaxations of mixed-integer optimal control problems

This article investigates a class of Mixed-Integer Optimal Control Problems (MIOCPs) with switching costs. We introduce the problem class of Minimal-Switching-Cost Optimal Control Problems (MSCP) with an objective function that consists of two summands, a continuous term depending on the state vector and an encoding of the discrete switching costs. State vectors of Mixed-Integer Optimal … Read more

Convergence of Finite-Dimensional Approximations for Mixed-Integer Optimization with Differential Equations

We consider a direct approach to solve mixed-integer nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach … Read more