Scalable adaptive cubic regularization methods

Adaptive cubic regularization (ARC) methods for unconstrained optimization compute steps from linear systems involving a shifted Hessian in the spirit of the Levenberg-Marquardt and trust-region methods. The standard approach consists in performing an iterative search for the shift akin to solving the secular equation in trust-region methods. Such search requires computing the Cholesky factorization of … Read more

Further developments of methods for traversing regions of non-convexity in optimization problems

This paper continues to address one of its author’s obsession with the well- known problem of dealing with non-convexity during the minimization of a nonlinear function f(x) by Newton-like methods. It builds on some proposals made by the present authors in “A Comparison of methods for traversing regions of non-convexity in optimization problems”. (Numerical Algorithms … Read more

The Landscape of the Proximal Point Method for Nonconvex-Nonconcave Minimax Optimization

Minimax optimization has become a central tool for modern machine learning with applications in generative adversarial networks, robust optimization, reinforcement learning, etc. These applications are often nonconvex-nonconcave, but the existing theory is unable to identify and deal with the fundamental difficulties posed by nonconvex-nonconcave structures. In this paper, we study the classic proximal point method … Read more

Strong Evaluation Complexity of An Inexact Trust-Region Algorithm for Arbitrary-Order Unconstrained Nonconvex Optimization

A trust-region algorithm using inexact function and derivatives values is introduced for solving unconstrained smooth optimization problems. This algorithm uses high-order Taylor models and allows the search of strong approximate minimizers of arbitrary order. The evaluation complexity of finding a $q$-th approximate minimizer using this algorithm is then shown, under standard conditions, to be $\mathcal{O}\big(\min_{j\in\{1,\ldots,q\}}\epsilon_j^{-(q+1)}\big)$ … Read more

A Noise-Tolerant Quasi-Newton Method for Unconstrained Optimization

This paper describes an extension of the BFGS and L-BFGS methods for the minimization of a nonlinear function subject to errors. This work is motivated by applications that contain computational noise, employ low-precision arithmetic, or are subject to statistical noise. The classical BFGS and L-BFGS methods can fail in such circumstances because the updating procedure … Read more

A family of optimal weighted conjugate-gradient-type methods for strictly convex quadratic minimization

We introduce a family of weighted conjugate-gradient-type methods, for strictly convex quadratic functions, whose parameters are determined by a minimization model based on a convex combination of the objective function and its gradient norm. This family includes the classical linear conjugate gradient method and the recently published delayed weighted gradient method as the extreme cases … Read more

An improved randomized algorithm with noise level tuning for large-scale noisy unconstrained DFO problems

In this paper, a new randomized solver (called VRDFON) for noisy unconstrained derivative-free optimization (DFO) problems is discussed. Complexity result in the presence of noise for nonconvex functions is studied. Two effective ingredients of VRDFON are an improved derivative-free line search algorithm with many heuristic enhancements and quadratic models in adaptively determined subspaces. Numerical results … Read more

Limited-memory Common-directions Method for Large-scale Optimization: Convergence, Parallelization, and Distributed Optimization

In this paper, we present a limited-memory common-directions method for smooth optimization that interpolates between first- and second- order methods. At each iteration, a subspace of a limited dimension size is constructed using first-order information from previous iterations, and an ef- ficient Newton method is deployed to find an approximate minimizer within this subspace. With … Read more

Globally convergent Newton-type methods for multiobjective optimization

We propose two Newton-type methods for solving (possibly) nonconvex unconstrained multiobjective optimization problems. The first is directly inspired by the Newton method designed to solve convex problems, whereas  the second uses  second-order information of the objective functions with ingredients of the steepest descent method.  One of the key points of our approaches  is to impose … Read more

A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer

We consider the problem of minimizing an objective function that is the sum of a convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers arise in modern machine learning applications, often for the purpose of obtaining models that are easier to interpret and that have higher predictive accuracy. We present a new … Read more