A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces

In a Hilbert space setting, we consider new continuous gradient-like dynamical systems for constrained multiobjective optimization. This type of dynamics was first investigated by Cl. Henry, and B. Cornet, as a model of allocation of resources in economics. Based on the Yosida regularization of the discontinuous part of the vector field which governs the system, … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

A splitting minimization method on geodesic spaces

We present in this paper the alternating minimization method on CAT(0) spaces for solving unconstraints convex optimization problems. Under the assumption that the function being minimize is convex, we prove that the sequence generated by our algorithm converges to a minimize point. The results presented in this paper are the first ones of this type … Read more

Properly optimal elements in vector optimization with variable ordering structures

In this paper, proper optimality concepts in vector optimization with variable ordering structures are introduced for the first time and characterization results via scalarizations are given. New type of scalarizing functionals are presented and their properties are discussed. The scalarization approach suggested in the paper does not require convexity and boundedness conditions. CitationPreprint of the … Read more

Smoothness Properties of a Regularized Gap Function for Quasi-Variational Inequalities

This article studies continuity and differentiability properties for a reformulation of a finite-dimensional quasi-variational inequality (QVI) problem using a regularized gap function approach. For a special class of QVIs, this gap function is continuously differentiable everywhere, in general, however, it has nondifferentiability points. We therefore take a closer look at these nondifferentiability points and show, … Read more

Optimal Power Grid Protection through A Defender-Attacker-Defender Model

Power grid vulnerability is a major concern of modern society, and its protection problem is often formulated as a tri-level defender-attacker-defender model. However, this tri-level problem is compu- tationally challenging. In this paper, we design and implement a Column-and-Constraint Generation algorithm to derive its optimal solutions. Numerical results on an IEEE system show that: (i) … Read more

Principle of optimal accuracy classification for metrological purposes

The conceptions of optimizing a quantitative classification hierarchy and the criterion of informational optimality have been used for modeling universal accuracy classification scale. Proposed model is based on test uncertainty ratios determined in conformity with optimal levels of confidence in evaluating measurement uncertainty, as well as on the optimal classification structure. The author believes that … Read more

Lot Sizing with Piecewise Concave Production Costs

We study the lot-sizing problem with piecewise concave production costs and concave holding costs. This problem is a generalization of the lot-sizing problem with quantity discounts, minimum order quantities, capacities, overloading, subcontracting or a combination of these. We develop a dynamic programming (DP) algorithm to solve this problem and answer an open question in the … Read more

A New Error Bound Result for Generalized Nash Equilibrium Problems and its Algorithmic Application

We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on an error bound and provide a new sufficient condition for it to hold that … Read more

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem

We consider two linear relaxations of the asymmetric traveling salesman problem (TSP), the Held-Karp relaxation of the TSP’s arc-based formulation, and a particular approximate linear programming (ALP) relaxation obtained by restricting the dual of the TSP’s shortest path formulation. We show that the two formulations produce equal lower bounds for the TSP’s optimal cost regardless … Read more