The Value of Information in Inventory Management

Inventory management traditionally assumes the precise knowledge of the underlying demand distribution and a risk-neutral manager. New product introduction does not fit this framework because (i) not enough information is available to compute probabilities and (ii) managers are generally risk-averse. In this work, we analyze the value of information for two-stage inventory management in a … Read more

Robust Inventory Management Using Tractable Replenishment Policies

We propose tractable replenishment policies for a multi-period, single product inventory control problem under ambiguous demands, that is, only limited information of the demand distributions such as mean, support and deviation measures are available. We obtain the parameters of the tractable replenishment policies by solving a deterministic optimization problem in the form of second order … Read more

An estimation-free, robust conditional value-at-risk portfolio allocation model

We propose a novel optimization model for risk-averse investors to obtain robust solutions for portfolio allocation problems. Unlike related models in the literature, no historical data or statistical estimation techniques are used to compute the parameters of the model. Instead, the parameters are directly obtained from current prices of options on the assets being considered. … Read more

Separation of convex polyhedral sets with uncertain data

This paper is a contribution to the interval analysis and separability of convex sets. Separation is a familiar principle and is often used not only in optimization theory, but in many economic applications as well. In real problems input data are usually not known exactly. For the purpose of this paper we assume that data … Read more

Experiments in Robust Portfolio Optimization

We present experimental results on portfolio optimization problems with return errors under the robust optimization framework. We use several a histogram-like model for return deviations, and a model that allows correlation among errors, together with a cutting-plane algorithm which proves effective for large, real-life data sets. Citation Columbia Center for Financial Engineering Report 2007-01 Columbia … Read more

Constrained linear system with disturbance: stability under disturbance feedback

This paper proposes a control parametrization under Model Predictive Controller (MPC) framework for constrained linear discrete time systems with bounded additive disturbances. The proposed approach has the same feasible domain as that obtained from parametrization over the family of time-varying state feedback policies. In addition, the closed-loop system is stable in the sense that the … Read more

From CVaR to Uncertainty Set: Implications in Joint Chance Constrained Optimization

In this paper we review the different tractable approximations of individual chance constraint problems using robust optimization on a varieties of uncertainty set, and show their interesting connections with bounds on the condition-value-at-risk CVaR measure popularized by Rockafellar and Uryasev. We also propose a new formulation for approximating joint chance constrained problems that improves upon … Read more

A New Cone Programming Approach for Robust Portfolio Selection

The robust portfolio selection problems have recently been studied by several researchers (e.g., see \cite{GoIy03,ErGoIy04,HaTu04,TuKo04}). In their work, the “separable” uncertainty sets of the problem parameters (e.g., mean and covariance of the random returns) were considered. These uncertainty sets share two common drawbacks: i) the actual confidence level of the uncertainty set is unknown, and … Read more

Cascading – An adjusted exchange method for robust conic programming

It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski [2] increases the numerical complexity of the solution compared to the original problem. Kocvara, Nemirovski and Zowe therefore introduced in [9] an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show … Read more

Decentralized Decision-making and Protocol Design for Recycled Material Flows

Reverse logistics networks often consist of several tiers with independent members competing at each tier. This paper develops a methodology to examine the individual entity behavior in reverse production systems where every entity acts to maximize its own benefits. We consider two tiers in the network, collectors and processors. The collectors determine individual flow functions … Read more