A Sample Approximation Approach for Optimization with Probabilistic Constraints

We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with risk level larger than the required risk level will yield a lower bound to the true … Read more

A General Heuristic Method for Joint Chance-Constrained Stochastic Programs with Discretely Distributed Parameters

We present a general metaheuristic for joint chance-constrained stochastic programs with discretely distributed parameters. We give a reformulation of the problem that allows us to define a finite solution space. We then formulate a novel neighborhood for the problem and give methods for efficiently searching this neighborhood for solutions that are likely to be improving. … Read more

Operations Risk Management by Planning Optimally the Qualified Workforce Capacity

Operational risks are defined as risks of human origin. Unlike financial risks that can be handled in a financial manner (e.g. insurances, savings, derivatives), the treatment of operational risks calls for a “managerial approach”. Consequently, we propose a new way of dealing with operational risk, which relies on the well known aggregate planning model. To … Read more

Tractable algorithms for chance-constrained combinatorial problems

This paper aims at proposing tractable algorithms to find effectively good solutions to large size chance-constrained combinatorial problems. A new robust model is introduced to deal with uncertainty in mixed-integer linear problems. It is shown to be strongly related to chance-constrained programming when considering pure 0-1 problems. Furthermore, its tractability is highlighted. Then, an optimization … Read more

Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem

We consider barrier problems associated with two and multistage stochastic convex optimization problems. We show that the barrier recourse functions at any stage form a self-concordant family with respect to the barrier parameter. We also show that the complexity value of the first stage problem increases additively with the number of stages and scenarios. We … Read more

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed Integer Programs

Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data … Read more

An integer programming approach for linear programs with probabilistic constraints

Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation … Read more

Robust Inventory Management Using Tractable Replenishment Policies

We propose tractable replenishment policies for a multi-period, single product inventory control problem under ambiguous demands, that is, only limited information of the demand distributions such as mean, support and deviation measures are available. We obtain the parameters of the tractable replenishment policies by solving a deterministic optimization problem in the form of second order … Read more

On the solution of stochastic multiobjective integer linear programming problems with a parametric study

In this study we consider a multiobjective integer linear stochastic programming problem with individual chance constraints. We assume that there is randomness in the right-hand sides of the constraints only and that the random variables are normally distributed. Some stability notions for such problem are characterized. An auxiliary problem is discussed and an algorithm as … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more