There is no variational characterization of the cycles in the method of periodic projections

The method of periodic projections consists in iterating projections onto $m$ closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of $m\geq 3$ sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers … Read more

A Note on Superlinear Convergence of a Primal-dual Interior Point Method for Nonlinear Semi-definite Programming

We replace one of the assumptions (nondegeneracy assumption) in [9] to show that the main results in [9] still hold. We also provide a simple example to show that the new assumption is satisfied, while the original assumption is not satisfied, with other assumptions being satisfied. This example shows that the new assumption does not … Read more

An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

This paper introduces a novel algorithm for the nonnegative matrix factorization and completion problem, which aims to nd nonnegative matrices X and Y from a subset of entries of a nonnegative matrix M so that XY approximates M. This problem is closely related to the two existing problems: nonnegative matrix factorization and low-rank matrix completion, … Read more

On the Number of Solutions Generated by the Dual Simplex Method

In this short paper, we give an upper bound for the number of different basic feasible solutions generated by the dual simplex method with the most negative pivoting rule for LP. The bound is comparable with the bound given by Kitahara and Mizuno (2010) for the primal simplex method. We apply the result to the … Read more

On the Number of Solutions Generated by Dantzig’s Simplex Method for LP with Bounded Variables

We give an upper bound for the number of different basic feasible solutions generated by Dantzig’s simplex method (the simplex method with the most negative pivoting rule) for LP with bounded variables by extending the result of Kitahara and Mizuno (2010). We refine the analysis by them and improve an upper bound for a standard … Read more

Variational Convergence of Bifunctions: Motivating Applications

It’s shown that a number of variational problems can be cast as finding the maxinf-points (or minsup-points) of bivariate functions, coveniently abbreviated to bifunctions. These variational problems include: linear and nonlinear complementarity problems, fixed points, variational inequalities, inclusions, non-cooperative games, Walras and Nash equilibrium problems. One can then appeal to the theory of lopsided convergence … Read more

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem with Symmetry

Given an undirected graph and a positive integer k, the maximum k-colorable subgraph problem consists of selecting a k-colorable induced subgraph of maximum cardinality. The natural integer programming formulation for this problem exhibits two kinds of symmetry: arbitrarily permuting the color classes and/or applying a non-trivial graph automorphism gives equivalent solutions. It is well known … Read more

On the hyperplanes arrangements in mixed-integer techniques

This paper is concerned with the improved constraints handling in mixed-integer optimization problems. The novel element is the reduction of the number of binary variables used for expressing the complement of a convex (polytopic) region. As a generalization, the problem of representing the complement of a possibly non-connected union of such convex sets is detailed. … Read more

Polynomial Approximations for Continuous Linear Programs

Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem instances. In this paper we propose a more generic approximation scheme for … Read more

On the Dynamic Stability of Electricity Markets

In this work, we present new insights into the dynamic stability of electricity markets. In particular, we discuss how short forecast horizons, incomplete gaming, and physical ramping constraints can give rise to stability issues. Using basic concepts of market efficiency, Lyapunov stability, and predictive control, we construct a new stabilizing market design. A numerical case … Read more