Convergence of string-averaging projection schemes for inconsistent convex feasibility problems

We study iterative projection algorithms for the convex feasibility problem of finding a point in the intersection of finitely many nonempty, closed and convex subsets in the Euclidean space. We propose (without proof) an algorithmic scheme which generalizes both the string-averaging algorithm and the block-iterative projections (BIP) method with fixed blocks and prove convergence of … Read more

A Wide Interval for Efficient Self-Scaling Quasi-Newton Algorithms

This paper uses certain conditions for the global and superlinear convergence of the two-parameter self-scaling Broyden family of quasi-Newton algorithms for unconstraiend optimization to derive a wide interval for self-scaling updates. Numerical testing shows that such algorithms not only accelerate the convergence of the (unscaled) methods from the so-called convex class, but increase their chances … Read more

Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS

An optimal control solution to a fed-batch fermentation process, responding to a competition call, was developed using NEOS Server. Substantial improvement to the nominal performance achieved in the paper demonstrates the ability of the NEOS Server and the APPS algorithm. CitationProceedings of Inst. of Mechanical Engineers , Part-I (UK). To appear. (Accepted May 2003).ArticleDownload View … Read more

Gradient Projection Methods for Quadratic Programs and Applications in Training Support Vector Machines

Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A nw adaptive stplength alternating rule is proposed, … Read more

Reservoir Operation by Ant Colony Optimization Algorithms

In this paper, ant colony optimization (ACO) algorithms are proposed for reservoir operation. Through a collection of cooperative agents called ants, the nearoptimum solution to the reservoir operation can be effectively achieved. To apply ACO algorithms, the problem is approached by considering a finite horizon with a time series of inflow, classifying the reservoir volume … Read more

Domination analysis for minimum multiprocessor scheduling

Let $P$ be a combinatorial optimization problem, and let $A$ be an approximation algorithm for $P$. The domination ratio $\domr(A,s)$ is the maximal real $q$ such that the solution $x(I)$ obtained by $A$ for any instance $I$ of $P$ of size $s$ is not worse than at least the fraction $q$ of the feasible solutions … Read more

Polyhedral Analysis for Concentrator Location Problems

The concentrator location problem is to choose a subset of a given terminal set to install concentrators and to assign each remaining terminal node to a concentrator to minimize the cost of installation and assignment. The concentrators may have capacity constraints. We study the polyhedral properties of concentrator location problems with different capacity structures. We … Read more

Strengthened Existence and Uniqueness Conditions for Search Directions in Semidefinite Programming

Primal-dual interior-point (p-d i-p) methods for Semidefinite Programming (SDP) are generally based on solving a system of matrix equations for a Newton type search direction for a symmetrization of the optimality conditions. These search directions followed the derivation of similar p-d i-p methods for linear programming (LP). Among these, a computationally interesting search direction is … Read more

Mathematical optimization for the inverse problem of intensity modulated radiation therapy

In this tutorial we discuss modeling issues in intensity modulated radiation therapy, contrasting the continuous model with the fully-discretized one and considering feasibility formulations versus optimization setups. We review briefly some mathematical optimization techniques for IMRT. These include global optimization, multi-objective optimization, linear and mixed integer programming and projection methods. Citationin: J.R. Palta and T.R. … Read more

Sharpening the Karush-John optimality conditions

A refined version of the Karush-John first order optimality conditions is presented which reduces the number of constraints for which a constraint qualification is needed. This version is a generalization both of the Karush-John conditions and of the first order optimality conditions for concave constraints. ArticleDownload View PDF