Approximation of the Quadratic Knapsack Problem

We study the approximability of the classical quadratic knapsack problem (QKP) on special graph classes. In this case the quadratic terms of the objective function are not given for each pair of knapsack items. Instead an edge weighted graph G = (V,E) whose vertices represent the knapsack items induces a quadratic profit p_ij for the … Read more

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items … Read more

Near-Optimal Algorithms for Capacity Constrained Assortment Optimization

Assortment optimization is an important problem that arises in many practical applications such as retailing and online advertising. In an assortment optimization problem, the goal is to select a subset of items that maximizes the expected revenue in the presence of the substitution behavior of consumers specified by a choice model. In this paper, we … Read more

Analysis of MILP Techniques for the Pooling Problem

The $pq$-relaxation for the pooling problem can be constructed by applying McCormick envelopes for each of the bilinear terms appearing in the so-called $pq$-formulation of the pooling problem. This relaxation can be strengthened by using piecewise-linear functions that over- and under-estimate each bilinear term. The resulting relaxation can be written as a mixed integer linear … Read more

A NOTE ON THE EXTENSION COMPLEXITY OF THE KNAPSACK POLYTOPE

We show that there are 0-1 and unbounded knapsack polytopes with super-polynomial extension complexity. More specifically, for each n in N we exhibit 0-1 and unbounded knapsack polyhedra in dimension n with extension complexity \Omega(2^\sqrt{n}). Article Download View A NOTE ON THE EXTENSION COMPLEXITY OF THE KNAPSACK POLYTOPE

Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) … Read more

Simultaneous approximation of multi-criteria submodular function maximization

Recently there has been intensive interest on approximation of the NP-hard submodular maximization problem due to their theoretical and practical significance. In this work, we extend this line of research by focusing on the simultaneous approximation of multiple submodular function maximization. We address existence and nonexistence results for both deterministic and randomized approximation when the … Read more

On Solving Biquadratic Optimization via Semidefinite Relaxation

In this paper, we study a class of biquadratic optimization problems. We first relax the original problem to its semidefinite programming (SDP) problem and discuss the approximation ratio between them. Under some conditions, we show that the relaxed problem is tight. Then we consider how to approximately solve the problems in polynomial time. Under several … Read more

Global Routing in VLSI Design: Algorithms, Theory, and Computational Practice

Global routing in VLSI (very large scale integration) design is one of the most challenging discrete optimization problems in computational theory and practice. In this paper, we present a polynomial time algorithm for the global routing problem based on integer programming formulation with a theoretical approximation bound. The algorithm ensures that all routing demands are … Read more

Local Search Approximation Algorithms for the Complement of the Min-hBcCut Problems

Min-$k$-cut is the problem of partitioning vertices of a given graph or hypergraph into $k$ subsets such that the total weight of edges or hyperedges crossing different subsets is minimized. For the capacitated min-$k$-cut problem, each edge has a non-negative weight, and each subset has a possibly different capacity that imposes an upper bound on … Read more