On the Convergence of the Entropy-Exponential Penalty Trajectories and Generalized Proximal Point Methods in Semidefinite Optimization

The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. As an application, the proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered, and the convergence of primal and dual sequences is proved. CitationJournal of Global … Read more

Central Paths in Semidefinite Programming, Generalized Proximal Point Method and Cauchy Trajectories in Riemannian Manifolds

The relationships among central path in the context of semidefinite programming, generalized proximal point method and Cauchy trajectory in Riemannian manifolds is studied in this paper. First it is proved that the central path associated to the general function is well defined. The convergence and characterization of its limit point is established for functions satisfying … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

A NEW BARRIER FOR A CLASS OF SEMIDEFINITE PROBLEMS

We introduce a new barrier function to solve a class of Semidefinite Optimization Problems (SOP) with bounded variables. That class is motivated by some (SOP) as the minimization of the sum of the first few eigenvalues of symmetric matrices and graph partitioning problems. We study the primal-dual central path defined by the new barrier and … Read more

Invariance and efficiency of convex representations

We consider two notions for the representations of convex cones: $G$-representation and lifted-$G$-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation. We first study the basic properties of these representations. We show that some basic properties of convex cones … Read more

Asymptotic behavior of the central path for a special class of degenerate SDP problems

This paper studies the asymptotic behavior of the central path $(X(\nu),S(\nu),y(\nu))$ as $\nu \downarrow 0$ for a class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly complementary primal-dual optimal solutions and whose “degenerate diagonal blocks” $X_{\cT}(\nu)$ and $S_{\cT}(\nu)$ of the central path are assumed to satisfy $\max\{ \|X_{\cT}(\nu)\|, \|S_{\cT}(\nu)\| \} … Read more

Asymptotic Behavior of Continuous Trajectories for Primal-Dual Potential-Reduction Methods

This article considers continuous trajectories of the vector fields induced by primal-dual potential-reduction algorithms for solving linear programming problems. It is known that these trajectories converge to the analytic center of the primal-dual optimal face. We establish that this convergence may be tangential to the central path, tangential to the optimal face, or in between, … Read more

Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

Analyticity of the central path at the boundary point in semidefinite programming

In this paper we study the limiting behavior of the central path for semidefinite programming. We show that the central path is an analytic function of the barrier parameter even at the limit point, provided that the semidefinite program has a strictly complementary solution. A consequence of this property is that the derivatives – of … Read more