Distributional robustness and inequity mitigation in disaster preparedness of humanitarian operations

We study a predisaster relief network design problem with uncertain demands. The aim is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, … Read more

Distributionally risk-receptive and risk-averse network interdiction problems with general ambiguity set

We introduce generalizations of stochastic network interdiction problem with distributional ambiguity. Specifically, we consider a distributionally risk-averse (or robust) network interdiction problem (DRA-NIP) and a distributionally risk-receptive network interdiction problem (DRR-NIP) where a leader maximizes a follower’s minimal expected objective value for either the worst-case or the best-case, respectively, probability distribution belonging to ambiguity set … Read more

A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems

In this paper, we study a distributionally robust multi-item newsvendor problem, where the demand distribution is unknown but specified with a general event-wise ambiguity set. Using the event-wise affine decision rules, we can obtain a conservative approximation formulation of the problem, which can typically be further reformulated as a linear program. In order to efficiently … Read more

Convex Chance-Constrained Programs with Wasserstein Ambiguity

Chance constraints yield non-convex feasible regions in general. In particular, when the uncertain parameters are modeled by a Wasserstein ball, [Xie19] and [CKW18] showed that the distributionally robust (pessimistic) chance constraint admits a mixed-integer conic representation. This paper identifies sufficient conditions that lead to convex feasible regions of chance constraints with Wasserstein ambiguity. First, when … Read more

DFO: A Framework for Data-driven Decision-making with Endogenous Outliers

A typical data-driven stochastic program aims to seek the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of Distributionally Robust Optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability … Read more

A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize when an … Read more

Data-Driven Distributionally Preference Robust Optimization Models Based on Random Utility Representation in Multi-Attribute Decision Making

Preference robust optimization (PRO) has recently been studied to deal with utility based decision making problems under ambiguity in the characterization of the decision maker’s (DM) preference. In this paper, we propose a novel PRO modeling paradigm which combines the stochastic utility theory with distributionally robust optimization technique. Based on the stochastic utility theory, our … Read more

Distributionally Robust Fair Transit Resource Allocation During a Pandemic

This paper studies Distributionally robust Fair transit Resource Allocation model (DrFRAM) under Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear and is, in general, NP-hard. Fortunately, we show that DrFRAM can be reformulated as a mixed-integer linear programming (MILP) … Read more

Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

We study adjustable distributionally robust optimization problems where their ambiguity sets can potentially encompass an infinite number of expectation constraints. Although such an ambiguity set has great modeling flexibility in characterizing uncertain probability distributions, the corresponding adjustable problems remain computationally intractable and challenging. To overcome this issue, we propose a greedy improvement procedure that consists … Read more

RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy

We develop a Python package called RSOME for modeling a wide spectrum of robust and distributionally robust optimization problems. RSOME serves as a modeling platform for formulating various optimization problems subject to distributional ambiguity in a highly readable and mathematically intuitive manner. Compared with the MATLAB version, RSOME in Python is more versatile and well … Read more