Energy and Reserve Dispatch with Distributionally Robust Joint Chance Constraints

We develop a two-stage stochastic program for energy and reserve dispatch, which ensures the safe operation of a power system with a high penetration of renewables and a strong interdependence with the natural gas system. Distributionally robust joint chance constraints with Wasserstein ambiguity sets ensure that there is no need for load shedding and renewable … Read more

A Distributionally Robust Analysis of the Program Evaluation and Review Technique

Traditionally, stochastic project planning problems are modeled using the Program Evaluation and Review Technique (PERT). PERT is an attractive technique that is commonly used in practice as it requires specification of only a few characteristics of the activities’ duration. Moreover, its computational burden is extremely low. Over the years, four main disadvantages of PERT have … Read more

Exploiting Partial Correlations in Distributionally Robust Optimization

In this paper, we identify partial correlation information structures that allow for simpler reformulations in evaluating the maximum expected value of mixed integer linear programs with random objective coefficients. To this end, assuming only the knowledge of the mean and the covariance matrix entries restricted to block-diagonal patterns, we develop a reduced semidefinite programming formulation, … Read more

Optimal Transport Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes

We consider optimal transport based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded … Read more

Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex … Read more

The Distributionally Robust Chance Constrained Vehicle Routing Problem

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the cost-optimal delivery of a single product to geographically dispersed customers through a fleet of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the customer demands are deterministic, we model the demands as a random vector whose distribution is … Read more

Data-Driven Distributionally Robust Chance-Constrained Optimization with Wasserstein Metric

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to distributionally robust optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Randomization refers to the process of taking decisions randomly according to the outcome of an independent randomization device such as a dice or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, where deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has … Read more

Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random vector from n independent samples. The proposed model minimizes the worst case (maximum) of Stein’s loss across all normal reference distributions within a prescribed Wasserstein distance from the normal distribution … Read more