Dynamic programming algorithms, efficient solution of the LP-relaxation and approximation schemes for the Penalized Knapsack Problem

We consider the 0-1 Penalized Knapsack Problem (PKP). Each item has a profit, a weight and a penalty and the goal is to maximize the sum of the profits minus the greatest penalty value of the items included in a solution. We propose an exact approach relying on a procedure which narrows the relevant range … Read more

Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can dynamically choose the next item based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more

Time and Dynamic Consistency of Risk Averse Stochastic Programs

In various settings time consistency in dynamic programming has been addressed by many authors going all the way back to original developments by Richard Bellman. The basic idea of the involved dynamic principle is that a policy designed at the first stage, before observing realizations of the random data, should not be changed at the … Read more

Improved dynamic programming and approximation results for the knapsack problem with setups

We consider the 0-1 Knapsack Problem with Setups (KPS). Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm which performs much better than a previous dynamic program and turns out to … Read more

pyomo.dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations

We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http: //www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, … Read more

MIDAS: A Mixed Integer Dynamic Approximation Scheme

Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm for solving finite-horizon stochastic dynamic programs with monotonic Bellman functions. MIDAS approximates these value functions using step functions, leading to stage problems that are mixed integer programs. We provide a general description of MIDAS, and prove its almost-sure convergence to an epsilon-optimal policy when … Read more

A Polyhedral Approach to Online Bipartite Matching

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately be matched or discarded. We consider various … Read more

A dynamic programming approach for a class of robust optimization problems

Common approaches to solve a robust optimization problem decompose the problem into a master problem (MP) and adversarial separation problems (APs). MP contains the original robust constraints, however written only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope … Read more

A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

Given $n$ elements with nonnegative integer weights $w=(w_1,\ldots,w_n)$, an integer capacity $C$ and positive integer ranges $u=(u_1,\ldots,u_n)$, we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most $C$. We give a deterministic algorithm that estimates the number of solutions to within … Read more

Distributionally robust inventory control when demand is a martingale

Demand forecasting plays an important role in many inventory control problems. To mitigate the potential harms of model misspecification in this context, various forms of distributionally robust optimization have been applied. Although many of these methodologies suffer from the problem of time-inconsistency, the work of Klabjan, Simchi-Levi and Song [85] established a general time-consistent framework … Read more