Exact Decentralized Optimization via Explicit $\ell_1$ Consensus Penalties

Consensus optimization enables autonomous agents to solve joint tasks through peer-to-peer exchanges alone. Classical decentralized gradient descent is appealing for its minimal state but fails to achieve exact consensus with fixed stepsizes unless additional trackers or dual variables are introduced. We revisit penalty methods and introduce a decentralized two-layer framework that couples an outer penalty-continuation … Read more

Exact Augmented Lagrangian Duality for Nonconvex Mixed-Integer Nonlinear Optimization

In the context of mixed-integer nonlinear problems (MINLPs), it is well-known that strong duality does not hold in general if the standard Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual (ALD), which adds a nonlinear penalty function to the classic Lagrangian function. For this setup, we study conditions under which the ALD … Read more

An Improved Penalty Algorithm using Model Order Reduction for MIPDECO problems with partial observations

This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra … Read more