Generalizations of the limited-memory BFGS method based on quasi-product form of update

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained minimization based on quasi-product form of update are derived. As for the first family, four variants how to utilize the Strang recurrences for the Broyden class of variable metric updates are investigated; three of them use the same number of stored vectors as the … Read more

Derivative-free methods for nonlinear programming with general lower-level constraints

Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. … Read more

On affine scaling inexact dogleg methods for bound-constrained nonlinear systems

A class of trust-region methods for large scale bound-constrained systems of nonlinear equations is presented. The methods in this class follow the so called affine-scaling approach and can efficiently handle large scale problems. At each iteration, a suitably scaled region around the current approximate solution is defined and, within such a region, the norm of … Read more

Nonmonotone Filter Method for Nonlinear Optimization

We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we … Read more

Switching stepsize strategies for PDIP

In this chapter we present a primal-dual interior point algorithm for solving constrained nonlinear programming problems. Switching rules are implemented that aim at exploiting the merits and avoiding the drawbacks of three different merit functions. The penalty parameter is determined using an adaptive penalty strategy that ensures a descent property for the merit function. The … Read more

A Derivative-Free Algorithm for the Least-square minimization

We develop a framework for a class of derivative-free algorithms for the least-squares minimization problem. These algorithms are based on polynomial interpolation models and are designed to take advantages of the problem structure. Under suitable conditions, we establish the global convergence and local quadratic convergence properties of these algorithms. Promising numerical results indicate the algorithm … Read more

Computational experience with modified conjugate gradient methods for unconstrained optimization

In this report, several modifications of the nonlinear conjugate gradient method are described and investigated. Theoretical properties of these modifications are proved and their practical performance is demonstrated using extensive numerical experiments. CitationTechnical report No. 1038, Institute of Computer Science, Pod Vodarenskou Vezi 2, 18207 Praha 8. December 2008ArticleDownload View PDF

An adaptive cubic regularisation algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

The adaptive cubic overestimation algorithm described in Cartis, Gould and Toint (2007) is adapted to the problem of minimizing a nonlinear, possibly nonconvex, smooth objective function over a convex domain. Convergence to first-order critical points is shown under standard assumptions, but without any Lipschitz continuity requirement on the objective’s Hessian. A worst-case complexity analysis in … Read more

A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints

We present a new relaxation scheme for mathematical programs with equilibrium constraints (MPEC), where the complementarity constraints are replaced by a reformulation that is exact for the complementarity conditions corresponding to sufficiently non-degenerate complementarity components and relaxes only the remaining complementarity conditions. A positive parameter determines to what extent the complementarity conditions are relaxed. The … Read more

A proximal method for composite minimization

We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algorithmic framework based on a subproblem constructed from a linearized approximation to the objective and a regularization term. Properties of local solutions … Read more