Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more

Convergence analysis of Riemannian trust-region methods

A general scheme for trust-region methods on Riemannian manifolds is proposed and analyzed. Among the various approaches available to (approximately) solve the trust-region subproblems, particular attention is paid to the truncated conjugate-gradient technique. The method is illustrated on problems from numerical linear algebra. Citation 19 June 2006 Article Download View Convergence analysis of Riemannian trust-region … Read more

Primal-dual interior point methods for PDE-constrained optimization

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in $L^p$. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier $L^\infty$-setting is analyzed, but also a more involved $L^q$-analysis, $q

An interior Newton-like method for nonnegative least-squares problems with degenerate solution

An interior point approach for medium and large nonnegative linear least-squares problems is proposed. Global and locally quadratic convergence is shown even if a degenerate solution is approached. Viable approaches for implementation are discussed and numerical results are provided. Citation Technical Report 1/2005, Dipartimento di Energetica ‘S. Stecco’, Universita di Firenze, Italia Article Download View … Read more

Interior-Point l_2 Penalty Methods for Nonlinear Programming with Strong Global Convergence Properties

We propose two line search primal-dual interior-point methods that approximately solve a equence of equality constrained barrier subproblems. To solve each subproblem, our methods apply a modified Newton method and use an $\ell_2$-exact penalty function to attain feasibility. Our methods have strong global convergence properties under standard assumptions. Specifically, if the penalty parameter remains bounded, … Read more

On Augmented Lagrangian methods with general lower-level constraints

Augmented Lagrangian methods with general lower-level constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lower-level type. Two methods of this class are introduced and analyzed. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved … Read more

On the Global Convergence of a Trust Region Method for Solving Nonlinear Constraints Infeasibility Problem

A framework for proving global convergence for a class of nonlinear constraints infeasibility problem is presented without assuming that the Jacobian has full rank everywhere. The underlying method is based on the simple sufficient reduction criteria where trial points are accepted provided there is a sufficient decrease in the constraints violation function. The proposed methods … Read more


We prove that any accumulation point of an elastic mode approach, applied to the optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality. If, in addition, the accumulation point satis es the MPCC-LICQ constraint quali cation and if … Read more

Additional properties of shifted valiable metric methods.

Some supplements to shifted variable metric or quasi-Newton methods for unconstrained minimization are given, including new limited-memory methods. Global convergence of these methods can be established for convex sufficiently smooth functions. Some encouraging numerical experience is reported. Citation Report No. V899-03, Institute of Computer Scienc, Czech Academy of Sciences, Prague, December 2003 (revised May 2004). … Read more

A Homogeneous Model for $ and *$ Nonlinear Complementarity Problems

The homogeneous model for linear programs is an elegant means of obtaining the solution or certificate of infeasibility and has importance regardless of the method used for solving the problem, interior-point methods or other methods. In 1999, Andersen and Ye generalized this model to monotone complementarity problems (CPs) and showed that most of the desirable … Read more