K-Adaptability in Two-Stage Robust Binary Programming

Over the last two decades, robust optimization has emerged as a computationally attractive approach to formulate and solve single-stage decision problems affected by uncertainty. More recently, robust optimization has been successfully applied to multi-stage problems with continuous recourse. This paper takes a step towards extending the robust optimization methodology to problems with integer recourse, which … Read more

A Trust Region Method for the Solution of the Surrogate Dual in Integer Programming

We propose an algorithm for solving the surrogate dual of a mixed integer program. The algorithm uses a trust region method based on a piecewise affine model of the dual surrogate value function. A new and much more flexible way of updating bounds on the surrogate dual’s value is proposed, which numerical experiments prove to … Read more

The continuous knapsack set

We study the convex hull of the continuous knapsack set which consists of a single inequality constraint with n non-negative integer and m non-negative bounded continuous variables. When n = 1, this set is a slight generalization of the single arc flow set studied by Magnanti, Mirchandani, and Vachani (1993). We first show that in … Read more

A Comprehensive Analysis of Polyhedral Lift-and-Project Methods

We consider lift-and-project methods for combinatorial optimization problems and focus mostly on those lift-and-project methods which generate polyhedral relaxations of the convex hull of integer solutions. We introduce many new variants of Sherali–Adams and Bienstock–Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project operators in a way which makes all of them more … Read more

Multiple-choice Vector Bin Packing: Arc-flow Formulation with Graph Compression

The vector bin packing problem (VBP) is a generalization of bin packing with multiple constraints. In this problem we are required to pack items, represented by p-dimensional vectors, into as few bins as possible. The multiple-choice vector bin packing (MVBP) is a variant of the VBP in which bins have several types and items have … Read more

Finding the Most Likely Infection Path in Networks with Limited Information

In this paper we address the problem of identifying the most likely infection pattern responsible for the spread of a disease in a network. In particular, we focus on the scenario where limited information (i.e. infection reports) is available during an ongoing outbreak. For this problem we propose a maximum likelihood model and present an … Read more

Memory-Aware Parallelized RLT3 for Solving Quadratic Assignment Problems

We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S5) … Read more

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items … Read more

On the generation of cutting planes which maximize the bound improvement

We propose the bound-optimal cutting plane method. It is a new paradigm for cutting plane generation in Mixed Integer Programming allowing for the simultaneous generation of k cuts which, when added to the current Linear Programming elaxation, yield the largest bound improvement. By Linear Programming duality arguments and standard linearization techniques we show that, for … Read more

Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service System Staffing and Scheduling with Arrival Rate Uncertainty

We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower … Read more