Exact regularization of linear programs

We show that linear programs (LPs) admit regularizations that either contract the original (primal) solution set or leave it unchanged. Any regularization function that is convex and has compact level sets is allowed–differentiability is not required. This is an extension of the result first described by Mangasarian and Meyer (SIAM J. Control Optim., 17(6), pp. … Read more

Existence of Equilibrium for Integer Allocation Problems

In this paper we show that if all agents are equipped with discrete concave production functions, then a feasible price allocation pair is a market equilibrium if and only if it solves a linear programming problem, similar to, but perhaps simpler than the one invoked in Yang (2001). Using this result, but assuming discrete concave … Read more

Further Development of Multiple Centrality Correctors for Interior Point Methods

This paper addresses the role of centrality in the implementation of interior point methods. Theoretical arguments are provided to justify the use of a symmetric neighbourhood. These are translated into computational practice leading to a new insight into the role of re-centering in the implementation of interior point methods. Arguments are provided to show that … Read more

On warm starts for interior methods

An appealing feature of interior methods for linear programming is that the number of iterations required to solve a problem tends to be relatively insensitive to the choice of initial point. This feature has the drawback that it is difficult to design interior methods that efficiently utilize information from an optimal solution to a “nearby” … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems

We define a variant of Anstreicher and Terlaky’s (1994) monotonic build-up (MBU) simplex algorithm for linear feasibility problems. Under a nondegeneracy assumption weaker than the normal one, the complexity of the algorithm can be given by $m\Delta$, where $\Delta$ is a constant determined by the input data of the problem and $m$ is the number … Read more

Postponing the Choice of the Barrier Parameter in Mehrotra-Type Predictor-Corrector Algorithms

In \cite{SPT} the authors considered a variant of Mehrotra’s predictor-corrector algorithm that has been widely used in several IPMs based optimization packages. By an example they showed that this variant might make very small steps in order to keep the iterate in a certain neighborhood of the central path, that itself implies the inefficiency of … Read more

An Exact Primal-Dual Penalty Method Approach to Warmstarting Interior-Point Methods for Linear Programming

One perceived deficiency of interior-point methods in comparison to active set methods is their inability to efficiently re-optimize by solving closely related problems after a warmstart. In this paper, we investigate the use of a primal-dual penalty approach to overcome this problem. We prove exactness and convergence and show encouraging numerical results on a set … Read more

Generalized Support Set Invariancy Sensitivity Analysis

Support set invariancy sensitivity analysis deals with finding the range of the parameter variation where there are optimal solutions with the same positive variables for all parameter values throughout this range. This approach to sensitivity analysis has been studied for Linear Optimization (LO) and Convex Quadratic Optimization (CQO) problems, when they are in standard form. … Read more

Enlarging Neighborhoods of Interior-Point Algorithms for Linear Programming via Least Values of Proximity measure Functions

It is well known that a wide-neighborhood interior-point algorithm for linear programming performs much better in implementation than those small-neighborhood counterparts. In this paper, we provide a unified way to enlarge the neighborhoods of predictor-corrector interior-point algorithms for linear programming. We prove that our methods not only enlarge the neighborhoods but also retain the so-far … Read more