A Dual Riemannian ADMM Algorithm for Low-Rank SDPs with Unit Diagonal

This paper proposes a dual Riemannian alternating direction method of multipliers (ADMM) for solving low-rank semidefinite programs with unit diagonal constraints. We recast the ADMM subproblem as a Riemannian optimization problem over the oblique manifold by performing the Burer-Monteiro factorization. Global convergence of the algorithm is established assuming that the subproblem is solved to certain … Read more

On Relatively Smooth Optimization over Riemannian Manifolds

We study optimization over Riemannian embedded submanifolds, where the objective function is relatively smooth in the ambient Euclidean space. Such problems have broad applications but are still largely unexplored. We introduce two Riemannian first-order methods, namely the retraction-based and projection-based Riemannian Bregman gradient methods, by incorporating the Bregman distance into the update steps. The retraction-based … Read more

Solving low-rank semidefinite programs via manifold optimization

We propose a manifold optimization approach to solve linear semidefinite programs (SDP) with low-rank solutions. This approach incorporates the augmented Lagrangian method and the Burer-Monteiro factorization, and features the adaptive strategies for updating the factorization size and the penalty parameter. We prove that the present algorithm can solve SDPs to global optimality, despite of the … Read more

Local Convergence of an Algorithm for Subspace Identification from Partial Data

GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative algorithm for identifying a linear subspace of $\R^n$ from data consisting of partial observations of random vectors from that subspace. This paper examines local convergence properties of GROUSE, under assumptions on the randomness of the observed vectors, the randomness of the subset of elements observed at … Read more