An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more

Quasi-Newton updates with weighted secant equations

We provide a formula for variational quasi-Newton updates with multiple weighted secant equations. The derivation of the formula leads to a Sylvester equation in the correction matrix. Examples are given. CitationReport naXys-09-2013, Namur Centre for Complex Systems, Unibersity of Namur, Namur (Belgium)ArticleDownload View PDF

A Sequential Quadratic Optimization Algorithm with Rapid Infeasibility Detection

We present a sequential quadratic optimization (SQO) algorithm for nonlinear constrained optimization. The method attains all of the strong global and fast local convergence guarantees of classical SQO methods, but has the important additional feature that fast local convergence is guaranteed when the algorithm is employed to solve infeasible instances. A two-phase strategy, carefully constructed … Read more

An example of slow convergence for Newton’s method on a function with globally Lipschitz continuous Hessian

An example is presented where Newton’s method for unconstrained minimization is applied to find an $\epsilon$-approximate first-order critical point of a smooth function and takes a multiple of $\epsilon^{-2}$ iterations and function evaluations to terminate, which is as many as the steepest-descent method in its worst-case. The novel feature of the proposed example is that … Read more

An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization

We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the … Read more

On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods

When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cubic regularization in at most $O(\epsilon^{-3/2})$ problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the … Read more

Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization

The worst-case evaluation complexity of finding an approximate first-order critical point using gradient-related non-monotone methods for smooth nonconvex and unconstrained problems is investigated. The analysis covers a practical linesearch implementation of these popular methods, allowing for an unknown number of evaluations of the objective function (and its gradient) per iteration. It is shown that this … Read more

An Adaptive Augmented Lagrangian Method for Large-Scale Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augmented … Read more

On the complexity of the steepest-descent with exact linesearches

The worst-case complexity of the steepest-descent algorithm with exact linesearches for unconstrained smooth optimization is analyzed, and it is shown that the number of iterations of this algorithm which may be necessary to find an iterate at which the norm of the objective function’s gradient is less that a prescribed $\epsilon$ is, essentially, a multiple … Read more