Lipschitz solutions of optimal control problems with state constraints of arbitrary order

In this paper we generalize to an arbitrary order, under minimal hypotheses, some sufficient conditions for Lipschitz continuity of the solution of a state constrained optimal control problems. The proof combines the approach by Hager in 1979 for dealing with first-order state constraints, and the high-order alternative formulation of the optimality conditions. CitationPublished as INRIA … Read more

A Factorization with Update Procedures for a KKT Matrix Arising in Direct Optimal Control

Quadratic programs obtained for optimal control problems of dynamic or discrete–time processes usually involve highly block structured Hessian and constraints matrices. Efficient numerical methods for the solution of such QPs have to respect and exploit this block structure. In interior point methods, this is elegantly achieved by the widespread availability of advanced sparse symmetric indefinite … Read more

The Integer Approximation Error in Mixed-Integer Optimal Control

We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP) in two ways. We improve a theorem that states that the solution of a relaxed and convexified problem can be approximated with arbitrary precision by a solution fulfilling the integer requirements. Unlike … Read more

Optimal control of a parabolic equation with time-dependent state constraints

In this paper we study the optimal control problem of the heat equation by a distributed control over a subset of the domain, in the presence of a state constraint. The latter is integral over the space and has to be satisfied at each time. Using for the first time the technique of alternative optimality … Read more

Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control

In model-based nonlinear optimal control switching decisions that can be optimized often play an important role. Prominent examples of such hybrid systems are gear switches for transport vehicles or valves in chemical engineering. Optimization algorithms need to take the discrete nature of the variables that model these switching decisions into account. Unnecessarily, for many applications … Read more

Second-order analysis of optimal control problems with control and initial-final state constraints

This paper provides an analysis of Pontryagine mimina satisfying a quadratic growth condition, for optimal control problems of ordinary differential equations with constraints on initial-final state, as well as control constraints satisfying the uniform positive linear independence condition. CitationRapport de Recherche INRIA 6707, Oct. 2008.ArticleDownload View PDF

Necessary Conditions for the Impulsive Optimal Control of Multibody Mechanical Systems

In this work, necessary conditions for the impulsive optimal control of multibody mechanical systems are stated. The conditions are obtained by the application subdifferential calculus techniques to extended-valued lower semi-continuous generalized Bolza functional that is evaluated on multiple intervals. Contrary to the approach in literature so far, the instant of possibly impulsive transition is considered … Read more

Necessary optimality condition for Nonsmooth Switching Control problem

This paper is concerned with a class optimal switching nonsmoth optimal control problem is considered. Both the switching instants and the control function are to the chosen such that the cost functional is minimized.The necessary optimality conditions are derived by means of normal cone and Dubovitskii Milyutin theory. CitationTechnical report 2007-3 Submited to the journal … Read more

Stability and Sensitivity Analysis for Optimal Control Problems with a First-order State Constraint having (nonessential) Touch Points

The paper deals with an optimal control problem with a scalar first-order state constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of the trajectory is not stable. We show how to perform a sensitivity analysis that predicts which touch points will, under a small perturbation, become inactive, remain touch … Read more

Primal-dual interior point methods for PDE-constrained optimization

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in $L^p$. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier $L^\infty$-setting is analyzed, but also a more involved $L^q$-analysis, $q