On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

A Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control

In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this … Read more

Double smoothing technique for infinite-dimensional optimization problems with applications to Optimal Control.

In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. … Read more

Combinatorial Integral Approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel … Read more

Lipschitz solutions of optimal control problems with state constraints of arbitrary order

In this paper we generalize to an arbitrary order, under minimal hypotheses, some sufficient conditions for Lipschitz continuity of the solution of a state constrained optimal control problems. The proof combines the approach by Hager in 1979 for dealing with first-order state constraints, and the high-order alternative formulation of the optimality conditions. Citation Published as … Read more

A Factorization with Update Procedures for a KKT Matrix Arising in Direct Optimal Control

Quadratic programs obtained for optimal control problems of dynamic or discrete–time processes usually involve highly block structured Hessian and constraints matrices. Efficient numerical methods for the solution of such QPs have to respect and exploit this block structure. In interior point methods, this is elegantly achieved by the widespread availability of advanced sparse symmetric indefinite … Read more

The Integer Approximation Error in Mixed-Integer Optimal Control

We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP) in two ways. We improve a theorem that states that the solution of a relaxed and convexified problem can be approximated with arbitrary precision by a solution fulfilling the integer requirements. Unlike … Read more

Optimal control of a parabolic equation with time-dependent state constraints

In this paper we study the optimal control problem of the heat equation by a distributed control over a subset of the domain, in the presence of a state constraint. The latter is integral over the space and has to be satisfied at each time. Using for the first time the technique of alternative optimality … Read more

Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control

In model-based nonlinear optimal control switching decisions that can be optimized often play an important role. Prominent examples of such hybrid systems are gear switches for transport vehicles or valves in chemical engineering. Optimization algorithms need to take the discrete nature of the variables that model these switching decisions into account. Unnecessarily, for many applications … Read more