A family of multi-parameterized proximal point algorithms

In this paper, a multi-parameterized proximal point algorithm combining with a relaxation step is developed for solving convex minimization problem subject to linear constraints. We show its global convergence and sublinear convergence rate from the prospective of variational inequality. Preliminary numerical experiments on testing a sparse minimization problem from signal processing indicate that the proposed … Read more

An accelerated inexact proximal point method for solving nonconvex-concave min-max problems

Abstract This paper presents a quadratic-penalty type method for solving linearly-constrained composite nonconvex-concave min-max problems. The method consists of solving a sequence of penalty subproblems which, due to the min-max structure of the problem, are potentially nonsmooth but can be approximated by smooth composite nonconvex minimization problems. Each of these penalty subproblems is then solved … Read more

A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems

In this paper, we describe and establish iteration-complexity of two accelerated composite gradient (ACG) variants to solve a smooth nonconvex composite optimization problem whose objective function is the sum of a nonconvex differentiable function f with a Lipschitz continuous gradient and a simple nonsmooth closed convex function h. When f is convex, the first ACG … Read more

Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms

This paper derives new inexact variants of the Douglas-Rachford splitting method for maximal monotone operators and the alternating direction method of multipliers (ADMM) for convex optimization. The analysis is based on a new inexact version of the proximal point algorithm that includes both an inertial step and overrelaxation. We apply our new inexact ADMM method … Read more

An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems

This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the QP-AIPP method and its variant solve linearly constrained nonconvex composite optimization problems using a quadratic penalty approach where the generated penalized subproblems are solved by a variant of the underlying AIPP … Read more

On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng’s modified forward-backward methods with inertial effects

In this paper, we propose and study the asymptotic convergence and nonasymptotic global convergence rates (iteration-complexity) of an inertial under-relaxed version of the relative-error hybrid proximal extragradient (HPE) method for solving monotone inclusion problems. We analyze the proposed method under more flexible assumptions than existing ones on the extrapolation and relative-error parameters. As applications, we … Read more

A Doubly Accelerated Inexact Proximal Point Method for Nonconvex Composite Optimization Problems

This paper describes and establishes the iteration-complexity of a doubly accelerated inexact proximal point (D-AIPP) method for solving the nonconvex composite minimization problem whose objective function is of the form f+h where f is a (possibly nonconvex) differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with bounded domain. D-AIPP … Read more

Finite convergence and weak sharpness for solutions of nonsmooth variational inequalities in Hilbert spaces

This paper deals with the study of weak sharp solutions for nonsmooth variational inequalities and finite convergence property of the proximal point method. We present several characterizations for weak sharpness of the solutions set of nonsmooth variational inequalities without using the gap functions. We show that under weak sharpness of the solutions set, the sequence … Read more

On proximal point-type algorithms for weakly convex functions and their connection to the backward Euler method

In this article we study the connection between proximal point methods for nonconvex optimization and the backward Euler method from numerical Ordinary Differential Equations (ODEs). We establish conditions for which these methods are equivalent. In the case of weakly convex functions, for small enough parameters, the implicit steps can be solved using a strongly convex … Read more

Stochastic model-based minimization of weakly convex functions

We consider an algorithm that successively samples and minimizes stochastic models of the objective function. We show that under weak-convexity and Lipschitz conditions, the algorithm drives the expected norm of the gradient of the Moreau envelope to zero at the rate $O(k^{-1/4})$. Our result yields the first complexity guarantees for the stochastic proximal point algorithm … Read more