Variational Problems in Quasi-Newton Methods

It has been known since the early 1970s that the Hessian matrices in quasi-Newton methods can be updated by variational means, in several different ways. The usual formulation of these variational problems uses a coordinate system, and the symmetry of the Hessian matrices are enforced as explicit constraints. As a result, the variational problems seem … Read more

A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming

A new quasi-Newton scheme for updating a low rank positive semi-definite Hessian approximation is described, primarily for use in sequential quadratic programming methods for nonlinear programming. Where possible the symmetric rank one update formula is used, but when this is not possible a new rank two update is used, which is not in the Broyden … Read more

A limited memory algorithm for inequality constrained minimization

A method for solving inequality constrained minimization problems is described. The algorithm is based on a primal-dual interior point approach, with a line search globalization strategy. A quasi-Newton technique (BFGS) with limited memory storage is used to approximate the second derivatives of the functions. The method is especially intended for solving problems with a large … Read more

A Wide Interval for Efficient Self-Scaling Quasi-Newton Algorithms

This paper uses certain conditions for the global and superlinear convergence of the two-parameter self-scaling Broyden family of quasi-Newton algorithms for unconstraiend optimization to derive a wide interval for self-scaling updates. Numerical testing shows that such algorithms not only accelerate the convergence of the (unscaled) methods from the so-called convex class, but increase their chances … Read more

Quasi-Newton methods for large-scale distributed parameter estimation

We develop Quasi-Newton methods for distributed parameter estimation problems, where the forward problem is governed by a set of partial differential equations. A Tikhonov style regularization approach yields an optimization problem with a special structure, where the gradients are calculated using the adjoint method. In many cases standard Quasi-Newton methods (such as L-BFGS) are not … Read more

Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints

Quasi-Newton methods in conjunction with the piecewise sequential quadratic programming are investigated for solving mathematical programming with equilibrium constraints, in particular for problems with complementarity constraints. Local convergence as well as superlinear convergence of these quasi-Newton methods can be established under suitable assumptions. In particular, several well-known quasi-Newton methods such as BFGS and DFP are … Read more

Extra-Updates Criterion for the Limited Memory BFGS Algorithm for Large Scale Nonlinear Optimization

This paper studies recent modifications of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modification technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this … Read more