On a Tractable Single-Level Reformulation of a Multilevel Model of the European Entry-Exit Gas Market with Market Power

We propose a framework that allows to quantitatively analyze the interplay of the different agents involved in gas trade and transport in the context of the European entry-exit system. While previous contributions focus on the case of perfectly competitive buyers and sellers of gas, our novel framework considers the mathematically more challenging case of a … Read more

Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

Nonconvex Equilibrium Models for Energy Markets: Exploiting Price Information to Determine the Existence of an Equilibrium

Motivated by examples from the energy sector, we consider market equilibrium problems (MEPs) involving players with nonconvex strategy spaces or objective functions, where the latter are assumed to be linear in market prices. We propose an algorithm that determines if an equilibrium of such an MEP exists and that computes an equilibrium in case of … Read more

A Tractable Multi-Leader Multi-Follower Peak-Load-Pricing Model with Strategic Interaction

While single-level Nash equilibrium problems are quite well understood nowadays, less is known about multi-leader multi-follower games. However, these have important applications, e.g., in the analysis of electricity and gas markets, where often a limited number of firms interacts on various subsequent markets. In this paper, we consider a special class of two-level multi-leader multi-follower … Read more

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-type Constraints and a Regularization Method

Optimization problems with cardinality constraints are very dicult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also discussed in … Read more