Application of the Lovász-Schrijver Operator to Compact Stable Set Integer Programs

The Lov\’asz theta function $\theta(G)$ provides a very good upper bound on the stability number of a graph $G$. It can be computed in polynomial time by solving a semidefinite program (SDP), which also turns out to be fairly tractable in practice. Consequently, $\theta(G)$ achieves a hard-to-beat trade-off between computational effort and strength of the … Read more

Stable Set Polytopes with High Lift-and-Project Ranks for the Lovász-Schrijver SDP Operator

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator \( \text{LS}_+\), with a particular focus on a search for relatively small graphs with high \( \text{LS}_+\)-rank (the least number of iterations of the \( \text{LS}_+\) operator on the fractional stable set polytope to compute the … Read more

Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph

De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)-1$: $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour … Read more

Finite convergence of sum-of-squares hierarchies for the stability number of a graph

We investigate a hierarchy of semidefinite bounds $\vartheta^{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G) -1$ steps. Even the weaker conjecture claiming finite convergence is still open. … Read more

The Stable Set Problem: Clique and Nodal Inequalities Revisited

The stable set problem is a fundamental combinatorial optimisation problem, that is known to be very difficult in both theory and practice. Some of the solution algorithms in the literature are based on 0-1 linear programming formulations. We examine an entire family of such formulations, based on so-called clique and nodal inequalities. As well as … Read more

On the Lovasz Theta Function and Some Variants

The Lovasz theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovasz and the other to Groetschel et al. The former SDP is often thought to be preferable … Read more

Lov\'{a}sz-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs

We study the Lov\'{a}sz-Schrijver lift-and-project operator ($\LS_+$) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the $\LS_+$-operator generates the stable set polytope in one step has been open since 1990. We call these graphs … Read more

Exploiting Equalities in Polynomial Programming

We propose a novel solution approach for polynomial programming problems with equality constraints. By means of a generic transformation, we show that solution schemes for the (typically simpler) problem without equalities can be used to address the problem with equalities. In particular, we propose new solution schemes for mixed binary programs, pure 0-1 quadratic programs, … Read more

Lift-and-project ranks and antiblocker duality

Recently, Aguilera et al.\ exposed a beautiful relationship between antiblocker duality and the lift-and-project operator proposed by Balas et al. We present a very short proof of their result that the \BCC-rank of the clique polytope is invariant under complementation. The proof of Aguilera et al. relies on their main technical result, which describes a … Read more

The stable set problem and the lift-and-project ranks of graphs

We study the lift-and-project procedures for solving combinatorial optimization problems, as described by Lov\’asz and Schrijver, in the context of the stable set problem on graphs. We investigate how the procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivision of an edge and the subdivision of a star operations … Read more