On the ReLU Lagrangian Cuts for Stochastic Mixed Integer Programming

We study stochastic mixed integer programs with both first-stage and recourse decisions involving mixed integer variables. A new family of Lagrangian cuts, termed “ReLU Lagrangian cuts,” is introduced by reformulating the nonanticipativity constraints using ReLU functions. These cuts can be integrated into scenario decomposition methods. We show that including ReLU Lagrangian cuts is sufficient to … Read more

Solving the Home Service Assignment, Routing, and Appointment Scheduling (H-SARA) problem with Uncertainties

The Home Service Assignment, Routing, and Appointment scheduling (H-SARA) problem integrates the strategical fleet-sizing, tactical assignment, operational vehicle routing and scheduling subproblems at different decision levels, with a single period planning horizon and uncertainty (stochasticity) from the service duration, travel time, and customer cancellation rate. We propose a two-stage stochastic mixed-integer linear programming model for … Read more

Relating Single-Scenario Facets to the Convex Hull of the Extensive Form of a Stochastic Single-Node Flow Polytope

Stochastic mixed-integer programs (SMIPs) are a widely-used modeling paradigm for sequential decision making under uncertainty. One popular solution approach to solving SMIPs is to solve the so-called “extensive form” directly as a large-scale (deterministic) mixed-integer program. In this work, we consider the question of when a facet-defining inequality for the convex hull of a deterministic, … Read more

Parallelizing Subgradient Methods for the Lagrangian Dual in Stochastic Mixed-Integer Programming

The dual decomposition of stochastic mixed-integer programs can be solved by the projected subgradient algorithm. We show how to make this algorithm more amenable to parallelization in a master-worker model by describing two approaches, which can be combined in a natural way. The first approach partitions the scenarios into batches, and makes separate use of … Read more

Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times

Planning maintenances and operations is an important concern in power systems. Although optimization based joint maintenance and operations scheduling is studied in the literature, sudden disruptions due to random generator failures are not considered. In this paper we propose a stochastic mixed-integer programming approach for integrated condition-based maintenance and operations scheduling problem for a fleet … Read more

Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas

This paper presents the first stochastic mixed integer programming model for a comprehensive hybrid power system design, including renewable energy generation, storage device, transmission network, and thermal generators, in remote areas. Given the computational complexity of the model, we developed a Benders’ decomposition algorithm with Pareto-optimal cuts. Computational results show significant improvement in our ability … Read more