Chance Constrained Programs with Gaussian Mixture Models

In this paper, we discuss input modeling and solution techniques for several classes of chance constrained programs (CCPs). We propose to use Gaussian mixture models (GMM), a semi-parametric approach, to fit the data available and to model the randomness. We demonstrate the merits of using GMM. We consider several scenarios that arise from practical applications … Read more

Risk averse stochastic programming: time consistency and optimal stopping

Bellman formulated a vague principle for optimization over time, which characterizes optimal policies by stating that a decision maker should not regret previous decisions retrospectively. This paper addresses time consistency in stochastic optimization. The problem is stated in generality first. The paper discusses time consistent decision-making by addressing risk measures which are recursive, nested, dynamically … Read more

Asymptotic results of Stochastic Decomposition for Two-stage Stochastic Quadratic Programming

This paper presents stochastic decomposition (SD) algorithms for two classes of stochastic programming problems: 1) two-stage stochastic quadratic-linear programming (SQLP) in which a quadratic program defines the objective function in the first stage and a linear program defines the value function in the second stage; 2) two-stage stochastic quadratic-quadratic programming (SQQP) which has quadratic programming … Read more

The Value of Multi-stage Stochastic Programming in Risk-averse Unit Commitment under Uncertainty

Day-ahead scheduling of electricity generation or unit commitment is an important and challenging optimization problem in power systems. Variability in net load arising from the increasing penetration of renewable technologies have motivated study of various classes of stochastic unit commitment models. In two-stage models, the generation schedule for the entire day is fixed while the … Read more

A two-stage stochastic optimization model for the bike-sharing allocation and rebalancing problem

The Bike-sharing allocation and rebalancing problem is the problem of determining the initial daily allocation of bikes to stations in a bike-sharing system composed of one depot and multiple capacitated stations, in which bikes can be rebalanced at a point in time during the day. Due to the uncertain demand in each station, we propose … Read more

A scenario decomposition algorithm for strategic time window assignment vehicle routing problems

We study the strategic decision-making problem of assigning time windows to customers in the context of vehicle routing applications that are affected by operational uncertainty. This problem, known as the Time Window Assignment Vehicle Routing Problem, can be viewed as a two-stage stochastic optimization problem, where time window assignments constitute first-stage decisions, vehicle routes adhering … Read more

An algorithm for solving infinite horizon Markov dynamic programmes

We consider a general class of infinite horizon dynamic programmes where state and control sets are convex and compact subsets of Euclidean spaces and (convex) costs are discounted geometrically. The aim of this work is to provide a convergence result for these problems under as few restrictions as possible. Under certain assumptions on the cost … Read more

A finite ε-convergence algorithm for two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer first and second stage variables

In this paper, we propose a generalized Benders decomposition-based branch and bound algorithm, GBDBAB, to solve two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both first and second stage decisions. In order to construct the convex hull of the MINLP subproblem for each scenario in closed-form, we first represent each MINLP subproblem … Read more

On stochastic auctions in risk-averse electricity markets with uncertain supply

This paper studies risk in a stochastic auction which facilitates the integration of renewable generation in electricity markets. We model market participants who are risk averse and reflect their risk aversion through coherent risk measures. We uncover a closed-form characterization of a risk-averse generator’s optimal pre-commitment behaviour for a given real-time policy, both with and … Read more

Stochastic dual dynamic programming with stagewise dependent objective uncertainty

We present a new algorithm for solving linear multistage stochastic programming problems with objective function coefficients modeled as a stochastic process. This algorithm overcomes the difficulties of existing methods which require discretization. Using an argument based on the finiteness of the set of possible cuts, we prove that the algorithm converges almost surely. Finally, we … Read more