Numerically safe lower bounds for the Capacitated Vehicle Routing Problem

The resolution of integer programming problems is typically performed via branch-and-bound. Nodes of the branch-and-bound tree are pruned whenever the corresponding subproblem is proven not to contain a solution better than the best solution found so far. This is a key ingredient for achieving reasonable solution times. However, since subproblems are solved in floating-point arithmetic, … Read more

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem

We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for … Read more

The stochastic vehicle routing problem, a literature review, part I: models

Building on the work of Gendreau, Laporte, and Seguin (1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems (SVRP). The numerous variants of the problem that have been studied in the literature are described and categorized. Also a thorough review of solution methods applied to the SVRP is included … Read more

The Vehicle Routing Problem with Occasional Drivers

We consider a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries, but may also use the services of occasional drivers who are willing to make a single delivery using their own vehicle in return for a small compensation if the delivery location is not … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Vehicle Routing with Roaming Delivery Locations

We propose the vehicle routing problem with roaming delivery locations (VRPRDL) to model an innovation in last-mile delivery where a customer’s order is delivered to the trunk of his car. We develop construction and improvement heuristics for the VRPRDL based on two problem-specific techniques: (1) efficiently optimizing the delivery locations for a fixed customer delivery … Read more

A disjunctive convex programming approach to the pollution routing problem

The pollution routing problem (PRP) aims to determine a set of routes and speed over each leg of the routes simultaneously to minimize the total operational and environmental costs. A common approach to solve the PRP exactly is through speed discretization, i.e., assuming that speed over each arc is chosen from a prescribed set of … Read more

New Benchmark Instances for the Capacitated Vehicle Routing Problem

The recent research on the CVRP is being slowed down by the lack of a good set of benchmark instances. The existing sets suff er from at least one of the following drawbacks: (i) became too easy for current algorithms; (ii) are too arti cial; (iii) are too homogeneous, not covering the wide range of characteristics found … Read more

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is a much-studied (and strongly NP-hard) combinatorial optimization problem, for which many integer programming formulations have been proposed. We present some new multi-commodity flow (MCF) formulations, and show that they dominate all of the existing ones, in the sense that their continuous relaxations yield stronger lower bounds. Moreover, we show … Read more

Multidirectional Physarum Solver: an Innovative Bio-inspired Algorithm for Optimal Discrete Decision Making

This paper introduces a new bio-inspired algorithm for optimal discrete decision making, able to incrementally grow and explore decision graphs in multiple directions. The heuristic draws inspiration from the idea that building decision sequences from multiple directions and then combining the sequences is an optimal choice if compared with a unidirectional approach. The behaviour of … Read more