Solving Bang-Bang Problems Using The Immersed Interface Method and Integer Programming

In this paper we study numerically solving optimal control problems with bang-bang control functions. We present a formal Lagrangian approach for solving the optimal control problem, and address difficulties encountered when numerically solving the state and adjoint equations by using the immersed interface method. We note that our numerical approach does not approximate the discontinuous … Read more

Efficient Prices under Uncertainty and Non-Convexity

Operators of organized wholesale electricity markets attempt to form prices in such a way that the private incentives of market participants are consistent with a socially optimal commitment and dispatch schedule. In the U.S. context, several competing price formation schemes have been proposed to address the non-convex production cost functions characteristic of most generation technologies. … Read more

On the Weak and Strong Convergence of a Conceptual Algorithm for Solving Three Operator Monotone Inclusions

In this paper, a conceptual algorithm modifying the forward-backward-half-forward (FBHF) splitting method for solving three operator monotone inclusion problems is investigated. The FBHF splitting method adjusts and improves Tseng’s forward-backward-forward (FBF) split- ting method when the inclusion problem has a third-part operator that is cocoercive. The FBHF method recovers the FBF iteration (when this aforementioned … Read more

A Fast and Robust Algorithm for Solving Biobjective Mixed Integer Programs

We present a fast and robust algorithm for solving biobjective mixed integer programs. The algorithm extends and merges ideas from two existing methods: the Boxed Line Method and the epsilon-Tabu Method. We demonstrate its efficacy in an extensive computational study. We also demonstrate that it is capable of producing a high-quality approximation of the nondominated … Read more

Smoothing fast iterative hard thresholding algorithm for $\ell_0$ regularized nonsmooth convex regression problem

We investigate a class of constrained sparse regression problem with cardinality penalty, where the feasible set is defined by box constraint, and the loss function is convex, but not necessarily smooth. First, we put forward a smoothing fast iterative hard thresholding (SFIHT) algorithm for solving such optimization problems, which combines smoothing approximations, extrapolation techniques and … Read more

A Riemannian smoothing steepest descent method for non-Lipschitz optimization on submanifolds

In this paper, we propose a Riemannian smoothing steepest descent method to minimize a nonconvex and non-Lipschitz function on submanifolds. The generalized subdifferentials on Riemannian manifold and the Riemannian gradient sub-consistency are defined and discussed. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary … Read more

On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this … Read more

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points

This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\”older … Read more

The Integrated Lot Sizing and Cutting Stock Problem in an Automotive Spring Factory

In this paper, a manufacturer of automotive springs is studied in order to reduce inventory costs and losses in the steel bar cutting process. For that, a mathematical model is proposed, focused on the short term decisions of the company, and considering parallel machines and operational constraints, besides the demand, inventory costs and limits for … Read more

Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems

In this paper, we address a two-stage integrated lot-sizing, scheduling and cutting stock problem with sequence-dependent setup times and setup costs. In production stage one, a cutting machine is used to cut large objects into smaller pieces, in which cutting patterns are generated and used to cut the pieces, and should be sequenced in order … Read more