Directional TGV-based image restoration under Poisson noise

We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more

A globally trust-region LP-Newton method for nonsmooth functions under the Hölder metric subregularity

We describe and analyse a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set, such formulation includes Karush-Kuhn-Tucker (KKT) systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a … Read more

An augmented Lagrangian method exploiting an active-set strategy and second-order information

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate … Read more

A Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

We propose a new nonmonontone accelerated proximal gradient method with variable stepsize strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from the overall point of view. The variable stepsize strategy don’t … Read more

Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces

In vector optimization, it is of increasing interest to study problems where the image space (a real linear space) is preordered by a not necessarily solid (and not necessarily pointed) convex cone. It is well-known that there are many examples where the ordering cone of the image space has an empty (topological / algebraic) interior, … Read more

Distributionally Robust Optimal Control and MDP Modeling

In this paper, we discuss Optimal Control and Markov Decision Process (MDP) formulations of multistage optimization problems when the involved probability distributions are not known exactly, but rather are assumed to belong to specified ambiguity families. The aim of this paper is to clarify a connection between such distributionally robust approaches to multistage stochastic optimization. … Read more

A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning

Sector duration optimization (SDO) is a problem arising in treatment planning for stereotactic radiosurgery on Gamma Knife. Given a set of isocenter locations, SDO aims to select collimator size configurations and irradiation times thereof such that target tissues receive prescribed doses in a reasonable amount of treatment time, while healthy tissues nearby are spared. We … Read more

Accelerated derivative-free spectral residual method for nonlinear systems of equations

Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely … Read more

Mathematical Foundations of Robust and Distributionally Robust Optimization

Robust and distributionally robust optimization are modeling paradigms for decision-making under uncertainty where the uncertain parameters are only known to reside in an uncertainty set or are governed by any probability distribution from within an ambiguity set, respectively, and a decision is sought that minimizes a cost function under the most adverse outcome of the … Read more