Data-compatibility of algorithms

The data-compatibility approach to constrained optimization, proposed here, strives to a point that is “close enough” to the solution set and whose target function value is “close enough” to the constrained minimum value. These notions can replace analysis of asymptotic convergence to a solution point of infinite sequences generated by specific algorithms. We consider a … Read more

Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods

We consider the superiorization methodology, which can be thought of as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to the objective function value) to one returned by a feasibility-seeking … Read more

String-Averaging Projected Subgradient Methods for Constrained Minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative … Read more

Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. Citation International Journal of Pure and Applied Mathematics, Vol. 46 (2008), … Read more