Decomposability and time consistency of risk averse multistage programs

Two approaches to time consistency of risk averse multistage stochastic problems were dis- cussed in the recent literature. In one approach certain properties of the corresponding risk measure are postulated which imply its decomposability. The other approach deals directly with conditional optimality of solutions of the considered problem. The aim of this paper is to … Read more

Statistical inference and hypotheses testing of risk averse stochastic programs

We study statistical properties of the optimal value and optimal solutions of the Sample Average Approximation of risk averse stochastic problems. Central Limit Theorem type results are derived for the optimal value and optimal solutions when the stochastic program is expressed in terms of a law invariant coherent risk measure. The obtained results are applied … Read more

Distributionally Robust Stochastic Programming

In this paper we study distributionally robust stochastic programming in a setting where there is a specified reference probability measure and the uncertainty set of probability measures consists of measures in some sense close to the reference measure. We discuss law invariance of the associated worst case functional and consider two basic constructions of such … Read more

Rectangular sets of probability measures

In this paper we consider the notion of rectangularity of a set of probability measures, introduced in Epstein and Schneider (2003), from a somewhat different point of view. We define rectangularity as a property of dynamic decomposition of a distributionally robust stochastic optimization problem and show how it relates to the modern theory of coherent … Read more

Differentiability properties of metric projections onto convex sets

It is known that directional differentiability of metric projection onto a closed convex set in a finite dimensional space is not guaranteed. In this paper we discuss sufficient conditions ensuring directional differentiability of such metric projections. The approach is based on a general theory of sensitivity analysis of parameterized optimization problems. ArticleDownload View PDF

Worst-case-expectation approach to optimization under uncertainty

In this paper we discuss multistage programming with the data process subject to uncertainty. We consider a situation were the data process can be naturally separated into two components, one can be modeled as a random process, with a specified probability distribution, and the other one can be treated from a robust (worst case) point … Read more

Minimal Representation of Insurance Prices

This paper addresses law invariant coherent risk measures and their Kusuoka representations. By elaborating the existence of a minimal representation we show that every Kusuoka representation can be reduced to its minimal representation. Uniqueness — in a sense specified in the paper — of the risk measure’s Kusuoka representation is derived from this initial result. … Read more

Bounds for nested law invariant coherent risk measures

With every law invariant coherent risk measure is associated its conditional analogue. In this paper we discuss lower and upper bounds for the corresponding nested (composite) formulations of law invariant coherent risk measures. In particular, we consider the Average Value-at-Risk and comonotonic risk measures. ArticleDownload View PDF

Consistency of sample estimates of risk averse stochastic programs

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent identically distributed data. Under mild regularity conditions we prove a Law of Large Numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straight forward way to establishing … Read more

Time consistency of dynamic risk measures

In this paper we discuss time consistency of risk averse multistage stochastic programming problems. We show, in a framework of finite scenario trees, that composition of law invariant coherent risk measures can be law invariant only for the expectation or max-risk measures. CitationPreprintArticleDownload View PDF