Level-set methods for convex optimization

Convex optimization problems arising in applications often have favorable objective functions and complicated constraints, thereby precluding first-order methods from being immediately applicable. We describe an approach that exchanges the roles of the objective and constraint functions, and instead approximately solves a sequence of parametric level-set problems. A zero-finding procedure, based on inexact function evaluations and … Read more

Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more

Variational analysis of spectral functions simplified

Spectral functions of symmetric matrices — those depending on matrices only through their eigenvalues — appear often in optimization. A cornerstone variational analytic tool for studying such functions is a formula relating their subdifferentials to the subdifferentials of their diagonal restrictions. This paper presents a new, short, and revealing derivation of this result. We then … Read more

Projection methods in quantum information science

We consider the problem of constructing quantum operations or channels, if they exist, that transform a given set of quantum states $\{\rho_1, \dots, \rho_k\}$ to another such set $\{\hat\rho_1, \dots, \hat\rho_k\}$. In other words, we must find a {\em completely positive linear map}, if it exists, that maps a given set of density matrices to … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more

Alternating projections and coupling slope

We consider the method of alternating projections for finding a point in the intersection of two possibly nonconvex closed sets. We present a local linear convergence result that makes no regularity assumptions on either set (unlike previous results), while at the same time weakening standard transversal intersection assumptions. The proof grows out of a study … Read more

Extreme point inequalities and geometry of the rank sparsity ball

We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l_1 norm of its entries — a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex … Read more

Quadratic growth and critical point stability of semi-algebraic functions

We show that quadratic growth of a semi-algebraic function is equivalent to strong metric subregularity of the subdifferential — a kind of stability of generalized critical points. In contrast, this equivalence can easily fail outside of the semi-algebraic setting. Citation13 pages, September, 2013ArticleDownload View PDF

Second-order growth, tilt stability, and metric regularity of the subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive definiteness/semidefiniteness properties of the second-order subdifferential (or generalized … Read more

Orthogonal invariance and identifiability

Orthogonally invariant functions of symmetric matrices often inherit properties from their diagonal restrictions: von Neumann’s theorem on matrix norms is an early example. We discuss the example of “identifiability”, a common property of nonsmooth functions associated with the existence of a smooth manifold of approximate critical points. Identifiability (or its synonym, “partial smoothness”) is the … Read more