An Exact Algorithm for the Partition Coloring Problem

We study the Partition Coloring Problem (PCP), a generalization of the Vertex Coloring Problem where the vertex set is partitioned. The PCP asks to select one vertex for each subset of the partition in such a way that the chromatic number of the induced graph is minimum. We propose a new Integer Linear Programming formulation … Read more

Tighter MIP Models for Barge Container Ship Routing

This paper addresses the problem of optimal planning of a line for a barge container shipping company. Given estimated weekly splittable demands between pairs of ports and bounds for the turnaround time, our goal is to determine the subset of ports to be called and the amount of containers to be shipped between each pair … Read more

An Effective Dynamic Programming Algorithm for the Minimum-Cost Maximal Knapsack Packing

Given a set of n items with profits and weights and a knapsack capacity C, we study the problem of finding a maximal knapsack packing that minimizes the profit of selected items. We propose for the first time an effective dynamic programming (DP) algorithm which has O(nC) time complexity and O(n+C) space complexity. We demonstrate … Read more

Exact Approaches for the Knapsack Problem with Setups

We consider a generalization of the knapsack problem in which items are partitioned into classes, each characterized by a fixed cost and capacity. We study three alternative Integer Linear Programming formulations. For each formulation, we design an efficient algorithm to compute the linear programming relaxation (one of which is based on Column Generation techniques). We … Read more

An improved DSATUR-based Branch and Bound for the Vertex Coloring Problem

Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR based Branch and Bound (DSATUR) is an effective exact algorithm for the … Read more

The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace

The integration of Unmanned Aircraft Systems (UAS) into civil airspace is one of the most challenging problems for the automation of the Controlled Airspace, and the optimization of the UAS route is a key step for this process. In this paper, we optimize the planning phase of a UAS mission that consists of departing from … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more

Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming

We propose a framework to model general guillotine restrictions in two-dimensional cutting problems formulated as Mixed Integer Linear Programs (MIP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within … Read more

Approaches to a real-world train timetabling problem in a railway node

We consider the Train Timetabling Problem (TTP) in a railway node (i.e. a set of stations in an urban area interconnected by tracks), which calls for determining the best schedule for a given set of trains during a given time horizon, while satisfying several track operational constraints. In particular, we consider the context of a … Read more

A pseudo-polynomial size formulation for 2-stage two-dimensional knapsack problems

Two dimensional cutting problems are about obtaining a set of rectangular items from a set of rectangular stock pieces and are of great relevance in industry, whenever a sheet of wood, metal or other material has to be cut. In this paper, we consider the 2-stage two-dimensional knapsack (2TDK) problem which requires finding the maximum … Read more