Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs

We present a parallel large neighborhood search framework for finding high quality primal solutions for generic Mixed Integer Programs (MIPs). The approach simultaneously solves a large number of sub-MIPs with the dual objective of reducing infeasibility and optimizing with respect to the original objective. Both goals are achieved by solving restricted versions of two auxiliary … Read more

An Abstract Model for Branching and its Application to Mixed Integer Programming

The selection of branching variables is a key component of branch-and-bound algorithms for solving Mixed-Integer Programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their “LP gains”, which is the dual bound … Read more

On the computational complexity of minimum-concave-cost flow in a two-dimensional grid

We study the minimum-concave-cost flow problem on a two-dimensional grid. We characterize the computational complexity of this problem based on the number of rows and columns of the grid, the number of different capacities over all arcs, and the location of sources and sinks. The concave cost over each arc is assumed to be evaluated … Read more

Robust Inventory Routing with Flexible Time Window Allocation

This paper studies a robust maritime inventory routing problem with time windows and stochastic travel times. One of the novelties of the problem is that the length and placement of the time windows are also decision variables. Such problems arise in the design and negotiation of long-term delivery contracts with customers who require on-time deliveries … Read more

A Parallel Local Search Framework for the Fixed-Charge Multicommodity Network Flow Problem

We present a parallel local search approach for obtaining high quality solutions to the Fixed Charge Multi-commodity Network Flow problem (FCMNF). The approach proceeds by improving a given feasible solution by solving restricted instances of the problem where flows of certain commodities are fixed to those in the solution while the other commodities are locally … Read more

How important are branching decisions: fooling MIP solvers

We show the importance of selecting good branching variables by exhibiting a family of instances for which an optimal solution is both trivial to find and provably optimal by a fixed-size branch-and-bound tree, but for which state-of-the-art Mixed Integer Programming solvers need an increasing amount of resources. The instances encode the edge-coloring problem on a … Read more

Minimum concave cost flows in capacitated grid networks

We study the minimum concave cost flow problem over a two-dimensional grid network (CFG), where one dimension represents time ($1\le t\le T$) and the other dimension represents echelons ($1\le l\le L$). The concave function over each arc is given by a value oracle. We give a polynomial-time algorithm for finding the optimal solution when the … Read more

Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing

We present two decomposition algorithms for single product deep-sea maritime inventory routing problems (MIRPs) that possess a core substructure common in many real-world applications. The problem involves routing vessels, each belonging to a particular vessel class, between loading and discharging ports, each belonging to a particular region. Our algorithms iteratively solve a MIRP by zooming … Read more

MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results

This paper presents a detailed description of a particular class of deterministic single product maritime inventory routing problems (MIRPs), which we call deep-sea MIRPs with inventory tracking at every port. This class involves vessel travel times between ports that are significantly longer than the time spent in port and require inventory levels at all ports … Read more

Flexible Solutions to Maritime Inventory Routing Problems with Delivery Time Windows

This paper studies a Maritime Inventory Routing Problem with Time Windows (MIRPTW) for deliveries with uncertain disruptions. We consider disruptions that increase travel times between ports and ultimately affect the deliveries in one or more time windows. The objective is to find flexible solutions that can withstand unplanned disruptions. We propose a Lagrangian heuristic algorithm … Read more