Duality in quasi-newton methods and new variational characterizations of the DFP and BFGS updates

It is known that quasi-Newton updates can be characterized by variational means, sometimes in more than one way. This paper has two main goals. We first formulate variational problems appearing in quasi-Newton methods within the space of symmetric matrices. This simplies both their formulations and their subsequent solutions. We then construct, for the first time, … Read more

The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

Variational Problems in Quasi-Newton Methods

It has been known since the early 1970s that the Hessian matrices in quasi-Newton methods can be updated by variational means, in several different ways. The usual formulation of these variational problems uses a coordinate system, and the symmetry of the Hessian matrices are enforced as explicit constraints. As a result, the variational problems seem … Read more

Convergence rate estimates for the gradient differential inclusion

Let f be a lower semi-continuous convex function in a Euclidean space, finite or infinite dimensional. The gradient differential inclusion is a generalized differential equation which requires that -x'(t) be in the subgradient of f at x. It is the continuous versions of the gradient descent method for minimizing f in case f is differentiable, … Read more

Self-scaled barrier functions on symmetric cones and their classification

Self-scaled barrier functions on self-scaled cones were introduced through a set of axioms in 1994 by Y.E. Nesterov and M.J. Todd as a tool for the construction of long-step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains … Read more