Exploiting sparsity for the min k-partition problem

The minimum k-partition problem is a challenging combinatorial problem with a diverse set of applications ranging from telecommunications to sports scheduling. It generalizes the max-cut problem and has been extensively studied since the late sixties. Strong integer formulations proposed in the literature suffer from a prohibitive number of valid inequalities and integer variables. In this … Read more

Invex Optimization Revisited

Given a non-convex optimization problem, we study conditions under which every Karush-Kuhn-Tucker (KKT) point is a global optimizer. This property is known as KT-invexity and allows to identify the subset of problems where an interior point method always converges to a global optimizer. In this work, we provide necessary conditions for KT-invexity in n-dimensions and … Read more

Complex Number Formulation and Convex Relaxations for Aircraft Conflict Resolution

We present a novel complex number formulation along with tight convex relaxations for the aircraft conflict resolution problem. Our approach combines both speed and heading control and provides global optimality guarantees despite non-convexities in the feasible region. As a side result, we present a new characterization of the conflict separation condition in the form of … Read more

Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching

This paper studies mixed-integer nonlinear programs featuring disjunctive constraints and trigonometric functions. We first characterize the convex hull of univariate quadratic on/off constraints in the space of original variables using perspective functions. We then introduce new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical bounds. These results are used to further tighten recent … Read more

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces new valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the litterature. Together with model intersections and bound tightening, the new linear cuts … Read more

Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

Convex Relaxations for Gas Expansion Planning

Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, … Read more

Constraint Qualification Failure in Action

This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables. In this framework, classical modeling techniques, including big-M approaches, are not applicable. We introduce a lifted second-order cone formulation of such on/off constraints and discuss related constraint qualification issues. A solution is proposed to avoid solvers’ failure. Citation H. L. Hijazi and L.Liberti … Read more

A Note on Linear On/Off Constraints

This note studies compact representations of linear on/off constraints in mixed-integer linear optimization. A characterization of the convex hull of linear disjunctions is given in the space of original variables. This result can improve formulations of mixed-integer linear programs featuring on/off constraints by reducing the integrality gap in a Branch and Bound approach. Citation @article{, … Read more