New lower bounds and asymptotics for the cp-rank

Let $p_n$ denote the largest possible cp-rank of an $n\times n$ completely positive matrix. This matrix parameter has its significance both in theory and applications, as it sheds light on the geometry and structure of the solution set of hard optimization problems in their completely positive formulation. Known bounds for $p_n$ are $s_n=\binom{n+1}2-4$, the current … Read more

Copositivity-based approximations for mixed-integer fractional quadratic optimization

We propose a copositive reformulation of the mixed-integer fractional quadratic problem (MIFQP) under general linear constraints. This problem class arises naturally in many applications, e.g., for optimizing communication or social networks, or studying game theory problems arising from genetics. It includes several APX-hard subclasses: the maximum cut problem, the $k$-densest subgraph problem and several of … Read more

From seven to eleven: completely positive matrices with high cp-rank

We study $n\times n$ completely positive matrices $M$ on the boundary of the completely positive cone, namely those orthogonal to a copositive matrix $S$ which generates a quadratic form with finitely many zeroes in the standard simplex. Constructing particular instances of $S$, we are able to construct counterexamples to the famous Drew-Johnson-Loewy conjecture (1994) for … Read more

Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs

We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to be … Read more

Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

Rounding on the standard simplex: regular grids for global optimization

Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all $\ell^p$-norms for $p\ge 1$. We show that the minimal $\ell^p$-distance to the regular grid on the standard simplex can exceed one, even for very fine … Read more

On the cp-rank and minimal cp factorizations of a completely positive matrix

We show that the maximal cp-rank of $n\times n$ completely positive matrices is attained at a positive-definite matrix on the boundary of the cone of $n\times n$ completely positive matrices, thus answering a long standing question. We also show that the maximal cp-rank of $5\times 5$ matrices equals six, which proves the famous Drew-Johnson-Loewy conjecture … Read more

Copositive optimization – recent developments and applications

Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of … Read more

Think co(mpletely )positive ! Matrix properties, examples and a clustered bibliography on copositive optimization

Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone of all completely positive symmetric nxn matrices, and its … Read more

Copositivity and constrained fractional quadratic problems

We provide Completely Positive and Copositive Programming formulations for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming (SDP) relaxations are derived for finding good lower bounds to these fractional programs, which are used in a global optimization branch-and-bound approach. Applications of the CFQP and StFQP, … Read more