Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more

Mining for diamonds – matrix generation algorithms for binary quadratically constrained quadratic problems

In this paper, we consider binary quadratically constrained quadratic problems and propose a new approach to generate stronger bounds than the ones obtained using the Semidefinite Programming relaxation. The new relaxation is based on the Boolean Quadric Polytope and is solved via a Dantzig-Wolfe Reformulation in matrix space. For block-decomposable problems, we extend the relaxation … Read more

Active Set Complexity of the Away-step Frank-Wolfe Algorithm

In this paper, we study active set identification results for the away-step Frank-Wolfe algorithm in different settings. We first prove a local identification property that we apply, in combination with a convergence hypothesis, to get an active set identification result. We then prove, in the nonconvex case, a novel O(1/ √k) convergence rate result and … Read more

Non-convex min-max fractional quadratic problems under quadratic constraints: copositive relaxations

In this paper we address a min-max problem of fractional quadratic (not necessarily convex) over linear functions on a feasible set described by linear and (not necessarily convex) quadratic functions. We propose a conic reformulation on the cone of completely positive matrices. By relaxation, a doubly non negative conic formulation is used to provide lower … Read more

First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants

In this paper, we focus on the problem of minimizing a non-convex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points both when using exact and Armijo line search. Then we show that the algorithms identify … Read more

Trust your data or not – StQP remains StQP: Community Detection via Robust Standard Quadratic Optimization

We consider the Robust Standard Quadratic Optimization Problem (RStQP), in which an uncertain (possibly indefinite) quadratic form is extremized over the standard simplex. Following most approaches, we model the uncertainty sets by ellipsoids, polyhedra, or spectrahedra, more precisely, by intersections of sub-cones of the copositive matrix cone. We show that the copositive relaxation gap of … Read more

A fresh CP look at mixed-binary QPs: New formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of orders … Read more

The complexity of simple models – a study of worst and typical hard cases for the Standard Quadratic Optimization Problem

In a Standard Quadratic Optimization Problem (StQP), a possibly indefinite quadratic form (the simplest nonlinear function) is extremized over the standard simplex, the simplest polytope. Despite this simplicity, the nonconvex instances of this problem class allow for remarkably rich patterns of coexisting local solutions, which are closely related to practical difficulties in solving StQPs globally. … Read more

Copositivity for second-order optimality conditions in general smooth optimization problems

Second-order local optimality conditions involving copositivity of the Hessian of the Lagrangian on the reduced linearization cone have the advantage that there is only a small gap between sufficient (the Hessian is strictly copositive) and necessary (the Hessian is copositive) conditions. In this respect, this is a proper generalization of convexity of the Lagrangian. We … Read more