Mixed-Integer Bilevel Optimization with Nonconvex Quadratic Lower-Level Problems: Complexity and a Solution Method

We study bilevel problems with a convex quadratic mixed-integer upper-level and a nonconvex quadratic, purely continuous lower-level problem. We prove $\Sigma_p^2$-hardness of this class of problems, derive an iterative lower- and upper-bounding scheme, and show its finiteness and correctness in the sense that it computes globally optimal points or proves infeasibility of the instance. To … Read more

Tighter yet more tractable relaxations and nontrivial instance generation for sparse standard quadratic optimization

The Standard Quadratic optimization Problem (StQP), arguably the simplest among all classes of NP-hard optimization problems, consists of extremizing a quadratic form (the simplest nonlinear polynomial) over the standard simplex (the simplest polytope/compact feasible set). As a problem class, StQPs may be nonconvex with an exponential number of inefficient local solutions. StQPs arise in a … Read more

On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, … Read more

Projection free methods on product domains

Projection-free block-coordinate methods avoid high computational cost per iteration and at the same time exploit the particular problem structure of product domains. Frank-Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank-Wolfe theory and the block-coordinate case. Moreover, most of … Read more

Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more

Mining for diamonds – matrix generation algorithms for binary quadratically constrained quadratic problems

In this paper, we consider binary quadratically constrained quadratic problems and propose a new approach to generate stronger bounds than the ones obtained using the Semidefinite Programming relaxation. The new relaxation is based on the Boolean Quadric Polytope and is solved via a Dantzig-Wolfe Reformulation in matrix space. For block-decomposable problems, we extend the relaxation … Read more

Active Set Complexity of the Away-step Frank-Wolfe Algorithm

In this paper, we study active set identification results for the away-step Frank-Wolfe algorithm in different settings. We first prove a local identification property that we apply, in combination with a convergence hypothesis, to get an active set identification result. We then prove, in the nonconvex case, a novel O(1/ √k) convergence rate result and … Read more

Non-convex min-max fractional quadratic problems under quadratic constraints: copositive relaxations

In this paper we address a min-max problem of fractional quadratic (not necessarily convex) over linear functions on a feasible set described by linear and (not necessarily convex) quadratic functions. We propose a conic reformulation on the cone of completely positive matrices. By relaxation, a doubly non negative conic formulation is used to provide lower … Read more

First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants

In this paper, we focus on the problem of minimizing a non-convex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points both when using exact and Armijo line search. Then we show that the algorithms identify … Read more